ABB low voltage drives
ACS800, stand-alone single drives
0.75 to 250Hp @ 240Vac
1.1 to 1450kW @ 400Vac

2 to 2250Hp @ 480Vac
5 to 3000Hp @ 600Vac
Product Pricing List

© 2008 ABB Inc. All rights reserved
Specifications and pricing subject to change without notice

Contact ABB Inc., Low Voltage Drives

U.S. Headquarters, Low Voltage Drives

ABB Inc.
Low Voltage Drives
16250 West Glendale Drive
New Berlin, WI 53151
Tel: (800) 752-0696
Fax: (262) 785-0397
U.S. ABB Low Voltage Drives Technical Support

Tel: (800) 435-7365
Fax: (262) 780-5135
E-mail: DrivesSupportLine@us.abb.com
U.S. ABB Low Voltage Drives Customer Service

Tel: (800) 752-0696
Fax: (800) 648-2072
E-mail: abb.drives.customerservice@us.abb.com

Trademarks

DriveWindow® is a registered trademark of ABB ModBus® is a trademark of Schneider Electric Profibus® is a registered trademark of Profibus International ControlNet ${ }^{8}$ is a trademark of ControlNet International, Ltd. DeviceNet ${ }^{\circledR}$ is a trademark of the Open DeviceNet Vendor Association.

Windows $®$ is a registered trademark of Microsoft Corp.

Table of Contents
Overview 4
Guidelines for use of Price Pages 5
General Terms and Conditions of Sale 6
Product Features 9
Product Specifications 10
Hardware Selection \& Description 12
Definition of NEMA and IEC environmental ratings 16
Basic Type Code information 17
Drive kVA specific Plus Code definitions 18
Notes for product selection 19
240Vac Ratings 20
400Vac Ratings 22
480Vac Ratings 24
600Vac Ratings 28
Regenerative Drives 30
Ultra Low Harmonic Drives 34
Floor Standing and Cabinet drive specific options 38
Common option selection 39
Dynamic Braking Resistors 45
Product Dimensions 48

Symbols used

$\mathrm{U}_{1}=$ Input Voltage	$\mathrm{P}_{\mathrm{N}}=$ Power - Normal Duty (kW)
$\mathrm{U}_{\mathrm{N}}=$ Nominal Motor Voltage	$\mathrm{P}_{\mathrm{N}}=$ Power - Normal Duty (HP)
$\mathrm{f}_{\mathrm{N}}=$ Nominal Motor Frequency	$\mathrm{I}_{2 \text { hd }}=$ Nominal Current - Heavy-Duty
$\mathrm{I}_{2 \mathrm{~N}}=$ Nominal Current - Normal Duty	$\mathrm{S}_{\text {Nhd }}=$ Power (kVA) - Heavy-Duty
$\mathrm{I}_{\text {Max }}=$ Maximum Current for Peak Overload	$\mathrm{P}_{\text {Nhd }}=$ Power (kW) - Heavy-Duty
$\mathrm{S}_{\mathrm{N}}=$ Power - Normal Duty (kVA)	$\mathrm{P}_{\mathrm{Nhd}}=$ Power (HP) - Heavy-Duty
NA = Not Available	INCL $=$ Included, must add plus code
	STD $=$ Standard, do not add plus code

Overview

The ACS800 is an adjustable frequency AC drive that achieves the ultimate in AC motor control performance. The second generation of AC drives to utilize ABB's Direct Torque Control (DTC) motor control algorithm, the ACS800 performs accurate speed and torque control without the use of a pulse encoder or other speed measurement device on standard squirrel cage induction AC motors.

With drives ranging from 0.75 to 3000 Hp (0.55 to 2700 kW), the ACS800 AC Drive features a multi-lingual alphanumeric control panel that also provides an intelligent start-up assistant. The assistant greatly simplifies drive set-up, operation, and fault diagnostics. The control panel can be mounted on the cover of the drive or remotely and has capabilities to upload and download drive configuration parameters.

The ACS800 can be used for the simplest to the most complex applications without complicated configuration changes. Three integral option slots support additional analog and digital I/O, encoder feedback, and various field bus communication option modules. An integral brake chopper is standard in all R2 and R3 frame drives and is available as an option in frames R4 through R8.

The ACS800 is available in both "Normal Duty" ratings and "Heavy Duty" ratings. The Normal Duty rating provides a 10% short term overload rating for 1 minute of every 5 minutes. The Heavy Duty rating provides a 50% short term overload rating for 1 minute of every 5 minutes. With DTC control, both ratings allow the motor to develop consistent high starting torque and are considered Constant Torque ratings from zero to base speed.

The ACS800 comes equipped with fifteen programmable blocks that can be assigned to any one of twenty functions. Linking these blocks to the drive's signals, parameters and control functions provides an extremely flexible and adaptive tool to modify the drive to fit the exact application needs. Additionally, an extensive library of preprogrammed application macros that, at the touch of a button, allow rapid configuration of inputs, outputs, and parameters for specific applications to maximize convenience and minimize start-up time.

Lead / Follower application support is included as standard. The Lead / Follower function is designed for applications in which the system is run by several ACS800 drives and the motor shafts are coupled to each other via gearing, chain, belt, etc. Using the Lead / Follower function, the load can be evenly distributed between the drives. The external control signals are connected to the Lead ACS800 only. The Lead controls the Follower(s) via a fiber optic serial communication link. This software is included in ACS800 as standard but requires the RDCO-03 and two fiber optic cables which must be purchased separately.

Guidelines for use of Price Pages

The ACS800 family of AC Drives was designed to meet virtually every customer's application requirements. These Price Pages were developed to allow quick and easy selection of standard ACS800 products. This document does not contain all available configuration variants of the ACS800 product family. Please contact your local ABB Low Voltage Drives sales representative for information on additional configurations.

Application considerations

Because of the wide variety of applications for the ACS800 AC Drives, those responsible for the application and control of the drive must satisfy themselves that all necessary steps have been taken to ensure that they meet all safety and installation requirements regarding national and local laws, regulation, codes, and standards. Unless otherwise noted, ACS800 AC Drive products found in this document are designed to meet NEMA (National Electrical Manufacturers Association) standards.

ACS800 products carry third party approval as follows;

Product	Approval or Listing
ACS800-U1	UL / cUL / CE LV Directive
ACS800-PC	UL, not intended for sales or installation outside the US
ACS800-U2	UL / cUL / CE LV Directive*
ACS800-U7	UL / cUL / CE LV Directive*
ACS800-07	UL / cUL / CE LV Directive* (UL included with standard option +C129)
ACS800-U11	UL / cUL / CE LV Directive
ACS800-17	UL / cUL / CE LV Directive* (UL included with standard option +C129)
ACS800-U31	UL / cUL / CE LV Directive
ACS800-37	UL / cUL / CE LV Directive* (UL included with standard option +C129)

* Fuses used in U2 and U7 product are UL class T or L and are not readily available outside the US
* CE LV Directive and UL are mutually exclusive.

Ordering CE product

All ACS800 AC Drives ship with CE LV Directive compliance. Most European installations below 500kW are operated from $380 \mathrm{Vac}, 50 \mathrm{~Hz}, 3$ phase networks. As such, CE Compliant product is shown in the $400 \mathrm{Vac}, 50 \mathrm{~Hz}$ table. Please note that to meet CE EMC requirements for the First or Second Environment, an optional EMC filter must be applied and the European Cable Lead Through (+H357) is required.

Selecting the correct drive rating

ACS800 AC Drives are current rated devices. The Hp ratings are provided for your reference only and are based on typical 4-pole squirrel cage induction motors at nominal voltages per NEC table 430-150. When selecting the drive ensure the drive has a continuous current rating equal to or greater than the full load amp rating of the motor (if full motor torque is required). Motor power in kW ratings are provided where applicable and are based on IEC 4-pole motor ratings.
NOTE: There may be differences between current required from an ACS800 AC Drive operating on a 500 Vac 50 Hz line and a 460 Vac 60 Hz line. ABB aligned the current requirements for the 500 Vac 50 Hz ratings with IEC motors and 460 Vac 60 Hz ratings with NEMA motors. The lower level of losses associated with operating on a 60 Hz network

Technical Support

ACS800 AC Drive Technical Support is available 24 hours per day 7days a week. To reach Technical Support call 1-800-HELP-365 (1-800-435-7365). Please have full drive part number / type code and serial number available.

Engineered products

ABB provides the option to our customers for ABB to design and build the ACS800 with non-standard options. Contact ABB Engineered Drives for details. Third party approvals (UL \& cUL) may not be available with all engineered solutions.

General Terms and Conditions of Sale

1. General. The terms and conditions contained herein, together with any additional or different terms contained in ABB's Proposal, if any, submitted to Purchaser (which Proposal shall control over any conflicting terms), constitute the entire agreement (the "Agreement") between the parties with respect to the order and supersede all prior communications and agreements regarding the order. Acceptance by ABB of the order, or Purchaser's acceptance of ABB's Proposal, is expressly limited to and conditioned upon Purchaser's acceptance of these terms and conditions, payment for or acceptance of any performance by ABB being acceptance. These terms and conditions may not be changed or superseded by any different or additional terms and conditions proposed by Purchaser to which terms ABB hereby objects. Unless the context otherwise requires, the term "Equipment" as used herein means all of the equipment, parts, accessories sold, and all software and software documentation, if any, licensed to Purchaser by ABB ("Software") under the order. Unless the context otherwise requires, the term "Services" as used herein means all labor, supervisory, technical and engineering, installation, repair, consulting or other services provided by ABB under the order. As used herein, the term "Purchaser" shall include the initial end use of the Equipment and/or services; provided, however, that Paragraph 13(a) shall apply exclusively to the initial end user.
2. Prices.
(a) Unless otherwise specified in writing, all Proposals expire thirty (30) days from the date thereof.
(b) Unless otherwise stated herein, Services prices are based on normal business hours (8 a.m. to 5 p.m. Monday through Friday). Overtime and Saturday hours will be billed at one and one-half ($11 / 2$) times the hourly rate; and Sunday hours will be billed at two (2) times the hourly rate; holiday hours will be billed at three (3) times the hourly rate. If a Services rate sheet is attached hereto, the applicable Services rates shall be those set forth in the rate sheet. Rates are subject to change without notice.
(c) The price does not include any federal, state or local property, license, privilege, sales, use, excise, gross receipts, or other like taxes which may now or hereafter be applicable. Purchaser agrees to pay or reimburse any such taxes which ABB or its suppliers are required to pay or collect. If Purchaser is exempt from the payment of any tax or holds a direct payment permit, Purchaser shall, upon order placement, provide ABB a copy, acceptable to the relevant governmental authorities of any such certificate or permit. (d) The price includes customs duties and other importation or exportation fees, if any, at the rates in effect on the date of ABB's Proposal. Any change after that date in such duties, fees, or rates, shall increase the price by ABB's additional cost.

3. Payment.

(a) Unless specified to the contrary in writing by ABB, payment terms are net cash, payable without offset, in United States Dollars, 30 days from date of invoice by wire transfer to the account designated by ABB in the Proposal
(b) If in the judgment of $A B B$ the financial condition of Purchaser at any time prior to delivery does not justify the terms of payment specified, $A B B$ may require payment in advance, payment security satisfactory to $A B B$, or may terminate the order, whereupon ABB shall be entitled to receive reasonable cancellation charges. If delivery is delayed by Purchaser, payment shall be due on the date ABB is prepared to make delivery. Delays in delivery or nonconformities in any installments delivered shall not relieve Purchaser of its obligation to accept and pay for remaining installments.
(c) Purchaser shall pay, in addition to the overdue payment, a late charge equal to the lesser of $11 / 2 \%$ per month or any part thereof or the highest applicable rate allowed by law on all such overdue amounts plus ABB's attorneys' fees and court costs incurred in connection with collection.
4. Changes.
(a) Any changes requested by Purchaser affecting the ordered scope of work must be accepted by ABB and resulting adjustments to affected provisions, including price, schedule, and guarantees mutually agreed in writing prior to implementation of the change.
(b) ABB may, at its expense, make such changes in the Equipment or Services as it deems necessary, in its sole discretion, to conform the Equipment or Services to the applicable specifications. If Purchaser objects to any such changes, ABB shall be relieved of its obligation to conform to the applicable specifications to the extent that conformance may be affected by such objection.

5. Delivery

(a) All Equipment manufactured, assembled or warehoused in the continental United States is delivered F.O.B. point of shipment. Equipment shipped from outside the continental United States is delivered F.O.B. United States port of entry. Purchaser shall be responsible for any and all demurrage or detention charges.
(b) If the scheduled delivery of Equipment is delayed by Purchaser or by Force Majeure, ABB may move the Equipment to storage for the account of and at the risk of Purchaser whereupon it shall be deemed to be delivered.
(c) Shipping and delivery dates are contingent upon Purchaser's timely approvals and delivery by Purchaser of any documentation required for ABB's performance hereunder.
(d) Claims for shortages or other errors in delivery must be made in writing to ABB within ten days of delivery. Equipment may not be returned except with the prior written consent of and subject to terms specified by ABB. Claims for damage after delivery shall be made directly by Purchaser with the common carrier
6. Title \& Risk of Loss. Except with respect to Software (for which title shall not pass, use being licensed) title to Equipment shall remain in ABB until fully paid for. Notwithstanding any agreement with respect to delivery terms or payment of transportation charges, risk of loss or damage shall pass to Purchaser upon delivery.
7. Inspection, Testing and Acceptance
(a) Any inspection by Purchaser of Equipment on ABB's premises shall be scheduled in advance to be performed during normal working hours.
(b) If the order provides for factory acceptance testing, ABB shall notify Purchaser when ABB will conduct such testing prior to shipment. Unless Purchaser states specific objections in writing within ten (10) days after completion of factory acceptance testing, completion of the acceptance test constitutes Purchaser's factory acceptance of the Equipment and its authorization for shipment.
(c) If the order provides for site acceptance testing, testing will be performed by ABB personnel to verify that the Equipment has arrived at site complete, without physical damage, and in good operating condition. Completion of site acceptance testing constitutes full and final acceptance of the Equipment. If, through no fault of ABB, acceptance testing is not completed within thirty (30) days after arrival of the Equipment at the site, the site acceptance test shall be deemed completed and the Equipment shall be deemed accepted.

General Terms and Conditions of Sale - Continued

8. Warranties and Remedies.

(a) Equipment and Services Warranty. ABB warrants that Equipment (excluding Software, which is warranted as specified in paragraph (d) below) shall be delivered free of defects in material and workmanship and that Services shall be free of defects in workmanship. The Warranty Remedy Period for Equipment (excluding Software, Spare Parts and Refurbished or Repaired Parts) shall end twelve (12) months after installation or eighteen (18) months after date of shipment, whichever first occurs. The Warranty Remedy Period for new spare parts shall end twelve (12) months after date of shipment. The Warranty Remedy Period for refurbished or repaired parts shall end ninety (90) days after date of shipment. The Warranty Remedy Period for Services shall end ninety (90) days after the date of completion of Services.
(b) Equipment and Services Remedy. If a nonconformity to the foregoing warranty is discovered in the Equipment or Services during the applicable Warranty Remedy Period, as specified above, under normal and proper use and provided the Equipment has been properly stored, installed, operated and maintained and written notice of such nonconformity is provided to ABB promptly after such discovery and within the applicable Warranty Remedy Period, ABB shall, at its option, either (i) repair or replace the nonconforming portion of the Equipment or re-perform the nonconforming Services or (ii) refund the portion of the price applicable to the nonconforming portion of Equipment or Services. If any portion of the Equipment or Services so repaired, replaced or re-performed fails to conform to the foregoing warranty, and written notice of such nonconformity is provided to ABB promptly after discovery and within the original Warranty Remedy Period applicable to such Equipment or Services or 30 days from completion of such repair, replacement or re-performance, whichever is later, ABB will repair or replace such nonconforming Equipment or re-perform the nonconforming Services. The original Warranty Remedy Period shall not otherwise be extended.
(c) Exceptions. ABB shall not be responsible for providing working access to the nonconforming Equipment, including disassembly and re-assembly of non-ABB supplied equipment, or for providing transportation to or from any repair facility, all of which shall be at Purchaser's risk and expense. ABB shall have no obligation hereunder with respect to any Equipment which (i) has been improperly repaired or altered; (ii) has been subjected to misuse, negligence or accident; (iii) has been used in a manner contrary to ABB's instructions; (iv) is comprised of materials provided by or a design specified by Purchaser; or (v) has failed as a result of ordinary wear and tear. Equipment supplied by ABB but manufactured by others is warranted only to the extent of the manufacturer's warranty, and only the remedies, if any, provided by the manufacturer will be allowed.
(d) Software Warranty and Remedies. ABB warrants that, except as specified below, the Software will, when properly installed, execute in accordance with ABB's published specification. If a nonconformity to the foregoing warranty is discovered during the period ending one (1) year after the date of shipment and written notice of such nonconformity is provided to ABB promptly after such discovery and within that period, including a description of the nonconformity and complete information about the manner of its discovery, ABB shall correct the nonconformity by, at its option, either (i) modifying or making available to the Purchaser instructions for modifying the Software; or (ii) making available at ABB's facility necessary corrected or replacement programs. ABB shall have no obligation with respect to any nonconformities resulting from (i) unauthorized modification of the Software or (ii) Purchaser-supplied software or interfacing. ABB does not warrant that the functions contained in the software will operate in combinations which may be selected for use by the Purchaser, or that the software products are free from errors in the nature of what is commonly categorized by the computer industry as "bugs".
(e) THE FOREGOING WARRANTIES ARE EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES OF QUALITY AND PERFORMANCE, WHETHER WRITTEN, ORAL OR IMPLIED, AND ALL OTHER WARRANTIES INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USAGE OF TRADE ARE HEREBY DISCLAIMED. THE REMEDIES STATED HEREIN CONSTITUTE PURCHASER'S EXCLUSIVE REMEDIES AND ABB'S ENTIRE LIABILITY FOR ANY BREACH OF WARRANTY.

9. Patent Indemnity.

(a) $A B B$ shall defend at its own expense any action brought against Purchaser alleging that the Equipment or the use of the Equipment to practice any process for which such Equipment is specified by ABB (a "Process") directly infringes any claim of a patent of the United States of America and to pay all damages and costs finally awarded in any such action, provided that Purchaser has given ABB prompt written notice of such action, all necessary assistance in the defense thereof and the right to control all aspects of the defense thereof including the right to settle or otherwise terminate such action in behalf of Purchaser.
(b) ABB shall have no obligation hereunder and this provision shall not apply to: (i) any other equipment or processes, including Equipment or Processes which have been modified or combined with other equipment or process not supplied by ABB; (ii) any Equipment or Process supplied according to a design, other than an ABB design, required by Purchaser; (iii) any products manufactured by the Equipment or Process; (iv) any patent issued after the date hereof; or (v) any action settled or otherwise terminated without the prior written consent of ABB.
(c) If, in any such action, the Equipment is held to constitute an infringement, or the practice of any Process using the Equipment is finally enjoined, ABB shall, at its option and its own expense, procure for Purchaser the right to continue using said Equipment; or modify or replace it with non-infringing equipment or, with Purchaser's assistance, modify the Process so that it becomes non-infringing; or remove it and refund the portion of the price allocable to the infringing Equipment. THE FOREGOING PARAGRAPHS STATE
THE ENTIRE LIABILITY OF ABB AND EQUIPMENT MANUFACTURER FOR ANY PATENT INFRINGEMENT.
(d) To the extent that said Equipment or any part thereof is modified by Purchaser, or combined by Purchaser with equipment or processes not furnished hereunder (except to the extent that ABB is a contributory infringer) or said Equipment or any part thereof is used by Purchaser to perform a process not furnished hereunder by ABB or to produce an article, and by reason of said modification, combination, performance or production, an action is brought against $A B B$, Purchaser shall defend and indemnify $A B B$ in the same manner and to the same extent that ABB would be obligated to indemnify Purchaser under this "Patent Indemnity" provision.

10. Limitation of Liability.

(a) In no event shall ABB, its suppliers or subcontractors be liable for special, indirect, incidental or consequential damages, whether in contract, warranty, tort, negligence, strict liability or otherwise, including, but not limited to, loss of profits or revenue, loss of use of the Equipment or any associated equipment, cost of capital, cost of substitute equipment, facilities or services, downtime costs, delays, and claims of customers of the Purchaser or other third parties for any damages. ABB's liability for any claim whether in contract, warranty, tort, negligence, strict liability, or otherwise for any loss or damage arising out of, connected with, or resulting from this Agreement or the performance or breach thereof, or from the design, manufacture, sale, delivery, resale, repair, replacement, installation, technical direction of installation, inspection, operation or use of any equipment covered by or furnished under this Agreement, or from any services rendered in connection therewith, shall in no case (except as provided in the section entitled "Patent Indemnity") exceed one-half (1/2) of the purchase price allocable to the equipment or part thereof or Services which gives rise to the claim.
(b) All causes of action against ABB arising out of or relating to this Agreement or the performance or breach hereof shall expire unless brought within one year of the time of accrual thereof.
(c) In no event, regardless of cause, shall ABB be liable for penalties or penalty clauses of any description or for indemnification of Purchaser or others for costs, damages, or expenses arising out of or related to the Equipment and/Services.

General Terms and Conditions of Sale - Continued

11. Laws and Regulations. ABB does not assume any responsibility for compliance with federal, state or local laws and regulations, except as expressly set forth herein, and compliance with any laws and regulations relating to the operation or use of the Equipment or Software is the sole responsibility of the Purchaser. All laws and regulations referenced herein shall be those in effect as of the Proposal date. In the event of any subsequent revisions or changes thereto, ABB assumes no responsibility for compliance therewith. If Purchaser desires a modification as a result of any such change or revision, it shall be treated as a change per Article 4. Nothing contained herein shall be construed as imposing responsibility or liability upon ABB for obtaining any permits, licenses or approvals from any agency required in connection with the supply, erection or operation of the Equipment. This Agreement shall be governed by the laws of the State of New York, but excluding the provisions of the United Nations Convention on Contracts for the International Sale of Goods and excluding New York law with respect to conflicts of law. Purchaser agrees that all causes of action against ABB under this Agreement shall be brought in the State Courts of the State of New York, or the U.S. District Court for the Southern District of New York. If any provision hereof, partly or completely, shall be held invalid or unenforceable, such invalidity or unenforceability shall not affect any other provision or portion hereof and these terms shall be construed as if such invalid or unenforceable provision or portion thereof had never existed.
12. OSHA. ABB warrants that the Equipment will comply with the relevant standards of the Occupational Safety and Health Act of 1970 ("OSHA") and the regulations promulgated thereunder as of the date of the Proposal. Upon prompt written notice from the Purchaser of a breach of this warranty, ABB will replace the affected part or modify it so that it conforms to such standard or regulation. ABB's obligation shall be limited to such replacement or modification. In no event shall ABB be responsible for liability arising out of the violation of any OSHA standards relating to or caused by Purchaser's design, location, operation, or maintenance of the Equipment, its use in association with other equipment of Purchaser, or the alteration of the Equipment by any party other than ABB.

13. Software License.

(a) ABB owns all rights in or has the right to sublicense all of the Software, if any, to be delivered to Purchaser under this Agreement. As part of the sale made hereunder Purchaser hereby obtains a limited license to use the Software, subject to the following: (i) The Software may be used only in conjunction with equipment specified by ABB; (ii) The Software shall be kept strictly confidential; (iii) The Software shall not be copied, reverse engineered, or modified; (iv) The Purchaser's right to use the Software shall terminate immediately when the specified equipment is no longer used by the Purchaser or when otherwise terminated, e.g. for breach, hereunder; and (v) the rights to use the Software are non-exclusive and non-transferable, except with ABB's prior written consent.
(b) Nothing in this Agreement shall be deemed to convey to Purchaser any title to or ownership in the Software or the intellectual property contained therein in whole or in part, nor to designate the Software a "work made for hire" under the Copyright Act, nor to confer upon any person who is not a named party to this Agreement any right or remedy under or by reason of this Agreement. In the event of termination of this License, Purchaser shall immediately cease using the Software and, without retaining any copies, notes or excerpts thereof, return to ABB the Software and all copies thereof and shall remove all machine readable Software from all of Purchaser's storage media.
14. Inventions and Information. Unless otherwise agreed in writing by ABB and Purchaser, all right, title and interest in any inventions, developments, improvements or modifications of or for Equipment and Services shall remain with ABB. Any design, manufacturing drawings or other information submitted to the Purchaser remains the exclusive property of ABB. Purchaser shall not, without ABB's prior written consent, copy or disclose such information to a third party. Such information shall be used solely for the operation or maintenance of the Equipment and not for any other purpose, including the duplication thereof in whole or in part.
15. Force Majeure. ABB shall neither be liable for loss, damage, detention or delay nor be deemed to be in default for failure to perform when prevented from doing so by causes beyond its reasonable control including but not limited to acts of war (declared or undeclared), Acts of God, fire, strike, labor difficulties, acts or omissions of any governmental authority or of Purchaser, compliance with government regulations, insurrection or riot, embargo, delays or shortages in transportation or inability to obtain necessary labor, materials, or manufacturing facilities from usual sources or from defects or delays in the performance of its suppliers or subcontractors due to any of the foregoing enumerated causes. In the event of delay due to any such cause, the date of delivery will be extended by period equal to the delay plus a reasonable time to resume production, and the price will be adjusted to compensate ABB for such delay.
16. Cancellation. Any order may be cancelled by Purchaser only upon prior written notice and payment of termination charges, including but not limited to, all costs identified to the order incurred prior to the effective date of notice of termination and all expenses incurred by ABB attributable to the termination, plus a fixed sum of ten (10) percent of the final total price to compensate for disruption in scheduling, planned production and other indirect costs.
17. Termination. No termination by Purchaser for default shall be effective unless, within fifteen (15) days after receipt by ABB of Purchaser's written notice specifying such default, $A B B$ shall have failed to initiate and pursue with due diligence correction of such specified default.

18. Export Control.

(a) Purchaser represents and warrants that the Equipment and Services provided hereunder and the "direct product" thereof are intended for civil use only and will not be used, directly or indirectly, for the production of chemical or biological weapons or of precursor chemicals for such weapons, or for any direct or indirect nuclear end use. Purchaser agrees not to disclose, use, export or re-export, directly or indirectly, any information provided by ABB or the "direct product" thereof as defined in the Export Control Regulations of the United States Department of Commerce, except in compliance with such Regulations.
(b) If applicable, ABB shall file for a U.S. export license, but only after appropriate documentation for the license application has been provided by Purchaser. Purchaser shall furnish such documentation within a reasonable time after order acceptance. Any delay in obtaining such license shall suspend performance of this Agreement by ABB. If an export license is not granted or, if once granted, is thereafter revoked or modified by the appropriate authorities, this Agreement may be canceled by ABB without liability for damages of any kind resulting from such cancellation. At ABB's request, Purchaser shall provide to ABB a Letter of Assurance and End-User Statement in a form reasonably satisfactory to ABB.
19. Assignment. Any assignment of this Agreement or of any rights or obligations under the Agreement without prior written consent of ABB shall be void.
20. Nuclear Insurance - Indemnity. For applications in nuclear projects, the Purchaser and/or its end user customer shall have complete insurance protection against liability and property damage resulting from a nuclear incident to and shall indemnify ABB, its subcontractors, suppliers and vendors against all claims resulting from a nuclear incident.
21. Resale. If Purchaser resells any of the Equipment, the sale terms shall limit ABB's liability to the buyer to the same extent that ABB's liability to Purchaser is limited hereunder.
22. Entire Agreement. This Agreement constitutes the entire agreement between ABB and Purchaser. There are no agreements, understandings, restrictions, warranties, or representations between $A B B$ and Purchaser other than those set forth herein or herein provided.

Product Features

Standard Features

UL and CUL (07 requires option selection)
4 line by 20 Character Multilingual Alphanumeric Display
Intelligent Start-Up Assistant
Motor ID Run
Motor Control
Direct Torque Control (DTC)
Scalar Control
Input Fuses and Disconnect (U2/U7/07)
Adaptive Programming with fifteen (15) logic
controller type function blocks
Three (3) programmable Analog Inputs
Seven (7) Digital inputs, (6) Programmable \& (1) dedicated Start Interlock
Two (2) programmable Analog Outputs
Three (3) Programmable Form C Relay Outputs
Adjustable filters on Analog inputs and outputs
Input Speed Signals
Two (2) Current 0 (4) - 20 mA
One (1) Voltage +/- 0 (2)- 10VDC
Increase/Decrease reference Contacts
FieldBus adapters (communication modules)
Start/Stop
2 wire control (dry contact closure)
3 wire control (momentary dry contacts)
Adjustable Current Limit
Adjustable Torque Limit
Nine (9) Supervision Functions
Electronic Reverse
Power Loss Ride-Through
DC Magnetizing Start (provides max starting torque)
DC Hold
Flux Braking
Flux Optimization
Fifteen (15) Preset Speeds
Three (3) Critical Speed Lockout Bands
Self-Tuning Speed Controller
Automatic Reset Customer Selectable
Two (2) Independently Adjustable Accel and Decel Ramps Linear or Adjustable "S" Curve Accel/Decel Ramps
Ramp to Stop or Coast to a Stop
Maximum Frequency Programmable up to 300 Hz
Integral Programmable PID Setpoint Controller
Mathematical Functions on Analog Reference Signals
Reactor with 3\% impedance - DC (R2\&R3 frames)
and AC (R4 frame \& above)
Integral Brake Chopper (R2 \& R3 frames)
Reference Trim
Programmable Brake Control
(Not available for n *D4+n*R8i frames)
Master/Follower

Programmable Fault Functions

Al<Min
Panel Loss
External Fault
Motor Thermal Protection
Stall
Under load
Motor Phase Loss
Ground Fault
Communications Fault
Supervision of optional I/O
Preprogrammed Protections:
Over current
Short Circuit
Over voltage (Intermediate Circuit)
Under voltage (Intermediate Circuit)
Input Phase Loss
Ambient temperature
Drive over temperature
Internal fault
Over frequency

Available options

I/O Options
DDCS Communications Card RDCO-01/02/03
Analog I/O Extension Card RAIO-01
Digital I/O Extension Card RDIO-01
Pulse Encoder Interface RTAC-01
Field bus Adapter Modules
DeviceNet ${ }^{\text {™ }}$
ProfiBus-DP ${ }^{\text {Tм }}$
ModBus ${ }^{\text {TM }}$ Adapter
Interbus-S
ControlNet ${ }^{\text {TM }}$
Ethernet
Dynamic Braking Choppers
CE EMC Filters (1st and 2nd Environments)
Windows® based Adaptive Programming Tool
DriveWindow® a Start-up and Programming Tool

Application Software options

Pump/Fan Control
Extruder
Spinning
Traverse
Centrifuge / Decanter
Inline Control
Center Winder/Unwind (requires app review)
Perm Magnet Synchronous Motor (requires app review)
PCP (Progressive Cavity Pump)
Rod Pump Light

Product Specifications

Input Connection

Input Voltage (U_{1})
Input Frequency
Line Imbalance
Fundamental Power Factor (cos j)
Connection
Output Connection
Output Voltage
Output Frequency

Frequency Resolution
Continuous Current
Short Term Overload Capacity
Peak Overload Capacity
Field Weakening Point
Switching Frequency
Acceleration \& Deceleration Time
Efficiency
Short circuit withstand rating
Connection

208/220/230/240Vac 3-phase +/-10\%
380/400/415/440/460/480/500Vac 3-phase +/-10\%
525/575/600/690Vac 3-phase +/-10\%
48 to 63 Hz , maximum rate of change $17 \% /$ second
Max $+/-3 \%$ of nominal phase to phase input voltage
0.98 (at nominal load)

Terminals $\mathrm{U}_{1}, \mathrm{~V}_{1}, \mathrm{~W}_{1}$

0 to $U_{1}, 3$-phase symmetrical, U_{N} at the field weakening point
-300 to +300 Hz , in DTC mode (0-3.2((U1 input voltage/ U_{N} motor) ${ }^{\star \mathrm{f}_{\mathrm{N}}}$ motor))
with dU/dT choke limited 120 Hz
0.01 Hz
1.0 * $\mathrm{I}_{2 \mathrm{~N}}$ (normal use)
$1.0 * I_{\text {2hd }}$ (heavy-duty use)
$I_{\text {Nmax }}=1.1 * I_{2 \mathrm{~N}}\left(1 \mathrm{~min} / 5\right.$ minutes @ $\left.40^{\circ} \mathrm{C}\right)$, typical
$I_{\text {hdmax }}=1.5$ * $_{\text {2hd }}$ (at least $1 \mathrm{~min} / 5 \mathrm{~min} @ 40^{\circ} \mathrm{C}$)
$I_{\text {max }}(400 \mathrm{Vac}$ and 500 Vac$)$ (at least 10 seconds at start)
8 to 300 Hz
3 kHz (average), DTC dynamically varies from 1 to 12 kHz
0.00 to 1800 Sec

98\% at nominal power level (97\% with Regenerative AC Drives)
100,000 AIC (UL) R2-R8
$\mathrm{U}_{2}, \mathrm{~V}_{2}, \mathrm{~W}_{2}$
Ambient Conditions, Operation

Air Temperature	0° to $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$, above $40^{\circ} \mathrm{C}$ the maximum output current is de-rated 1% for every additional $1^{\circ} \mathrm{C}$ (up to $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ maximum limit)
Relative Humidity	5 to 95%, no condensation allowed, maximum relative humidity is 60% in the presence of corrosive gasses
Contamination Levels	
IEC	$60721-3-1,60721-3-2$ and $60721-3-3$
Chemical Gasses	3 C 1 (w/o coating), 3 C 2 (with coating)
Solid Particles	3 S 2

Product Specifications

Analog Inputs

Three (3) Programmable Differential Inputs

Two (2) Current Signals	$0(4)$ to 20 mA, Input Resistance $\mathrm{R}_{1}=100 \mathrm{ohms}$
One (1) Voltage Signal	$-10 \mathrm{Vdc} / 0(2)$ to +10 Vdc , Input Resistance $\mathrm{R}_{\mathrm{l}}=200 \mathrm{k}$-ohms
Common Mode Voltage	$+/-15 \mathrm{Vdc}$, max.
Common Mode Rejection Ratio	$>60 \mathrm{~dB}$ at 50 Hz
Resolution	$0.025 \%(12 \mathrm{bit})$
Accuracy	$+/-0.5 \%$
Input Updating Time	6 ms (Standard Application Software)
Optional Isolation	Available through optional external module
Reference Power Supply	
Voltage	$+10 \mathrm{Vdc}, 0,-10 \mathrm{Vdc}+/-0.5 \%$ at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$
Maximum Load	10 mA
Applicable Potentiometer	$1 \mathrm{k}-\mathrm{ohm}$ to $10 \mathrm{k}-\mathrm{ohm}$

Analog Outputs

Two (2) Programmable Current Outputs

Signal Level	$0(4)$ to 20 mA
Resolution	$0.025 \%(12$ bit)
Accuracy	$+/-1 \%$ Full Scale Range at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$
Maximum Load Impedance	700 ohms
Output Updating Time	24 ms (Standard Application Software)

Digital Inputs

Six (6) Programmable Digital Inputs (Common Ground), plus One (1) Start Interlock
Isolation Isolated, can be divided in two isolated groups

Isolation Test Voltage 500 VAC, 1 minute
Signal Level $24 \mathrm{Vdc},-15 \%$ to $+20 \%$
Logical switch thresholds $<8 \mathrm{Vdc}$ at " 0 ", $>12 \mathrm{Vdc}$ at " 1 "
Input Current
10 mA , Digital Input 1 to Digital Input 5, 5 mA Digital Input 6
Filtering Time Constant 1 ms
Input Updating Time 6 ms (Standard Application Software)
Internal 24 Vdc Supply for Digital Inputs

Voltage	24 Vdc
Maximum Current	100 mA
Connector	$\times 22.7$

Connector $\quad \times 22: 7$
Protection Short Circuit Proof
An external 24 Vdc supply may be used instead of the internal supply

Relay Outputs

Three Programmable Relay Outputs

Switching Capacity	8 A at 24 Vdc or $250 \mathrm{Vac}, 0.4 \mathrm{~A}$ at 120 Vdc
Maximum Continuous Current	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{Amps} \mathrm{RMS}$
Contact Material	Silver Cadmium Oxide (AgCdO)
Isolation Test Voltage	$4 \mathrm{kVac}, 1$ minute
Output Updating Time	100 ms (Standard Application Software)
Protections	
Single Phase	Protected (input \& output)
Over Voltage Trip Limit	$1.3 * \mathrm{U}_{1 \text { max }}$
Under Voltage Trip Limit	$0.65 * \mathrm{U}_{1 \text { min }}$
Over Temperature	Protected
Auxiliary Voltage	Short Circuit Protected
Ground Fault	Protected
Microprocessor Fault	Protected
Motor Stall Protection	Protected
Motor Over Temperature	Protected $\left(I^{2} \mathrm{t}\right)$

Hardware Selection \& Description

The ACS800 product family is designed to meet virtually any application and operating environment, with a complete selection of voltage, power, and enclosure ratings. Combined with highly flexible control and communications options, the ACS800 can be used in most every application imaginable. Listed below are brief descriptions of the package designs found in this document.

ACS800-U1-xxxx-x

2 to 200Hp
The ACS800-U1 is a wall-mountable drive available from 0.75 to $75 \mathrm{Hp} @ 240 \mathrm{Vac}, 2$ to 200Hp @ 480Vac, and 5 to $100 \mathrm{Hp} @ 600 \mathrm{Vac}$. The ACS800-U1 has five different frame sizes (R2 to R6). The ACS800-U1 is available in a standard NEMA 1 or optional NEMA 12 enclosure and a control panel for user interface provided as standard. The front section of the ACS800-U1 contains the electronics, power and control wire terminals. The rear section forms a cooling channel. The two section construction allows the unit to be installed protruding through a wall of a customer supplied enclosure, placing the rear section in a cooling air duct to minimize the heat inside the cabinet. ABB does not currently offer a flange mounting kit for the U1 product. In standard installations, the converter is mounted directly onto a wall. The upward cooling air flow is provided by a fan or fans built into the bottom of each drive. The R2 and R3 frames have built in braking choppers. When ordering the optional brake chopper for sizes R4-R6, it mounts internally to the base unit and adds no additional size to the product. (factory installed only)

ACS800-U2-xxxx-x+0C111

150 to 600Hp
The ACS800-U2 with plus code (+0C111) is a free standing floor mounted NEMA 1 enclosed AC drive designed to be installed in a control room or electrical equipment room with very clean environment and minimal air-born dust. These drives are not intended for industrial environments with dust and other atmospheric contaminants. Cooling air intake and exhaust vents are covered with grates to provide a touch proof installation. This configuration does not include an input disconnect or fuses. An Input disconnect and High Speed fuses (Class T minimum) must be provided by the user. A control panel for user interface is mounted on the front of the drive enclosure. Bottom cable entry and exit is the only available configuration. A common mode filter is provided as standard for R8 frame drives. When ordering the optional brake chopper, it is internally mounted and adds no additional size to the unit.

NOTE: DC Bus connections are not available on the ACS800-U2 drives when the internal braking chopper option is not selected.

ACS800-PC-xxxx-x
150 to 600Hp
The ACS800-PC is available from 150 to $600 \mathrm{Hp} @ 480 \mathrm{Vac}$ only. It is available in a standard NEMA 1 or NEMA 12 filtered and ventilated Rittal® enclosure. These drives are designed to meet the demands of an industrial environment. Drives are provided with a through the door interlocked, disconnect switch (circuit breaker) that is lockable in the off position, and current limiting fast acting Class T fuses. The drive also comes standard with top entry input power and top exit motor leads, common mode filter, and coated boards. For frame size R8 drives the second environment EMC/RFI filter is also included. A control panel for user interface, parameter adjustment, and drive operation is mounted on the front of the drive enclosure. When ordering the optional brake chopper, it is internally mounted and adds no additional size to the unit.

NOTE: DC Bus connections are always included on the ACS800-PC drives.

Hardware Selection \& Description

ACS800-U2-xxxX-X
The ACS800-U2 is available from 150 to 600 Hp @ 480Vac. It is designed to be a free standing floor mounted enclosure as NEMA 1 only and is provided with a through the door interlocked, fusible disconnect switch, lockable in the off position. These drives are not intended for industrial environments with dust and other atmospheric contaminants. Cooling air intake and exhaust vents are covered with grates to provide a touch proof installation. A control panel for user interface is mounted on the front of the drive enclosure. As a standard, input power and motor leads enter and exit through the top of the extended enclosure. As an option, input power and motor cable entry may be provided as bottom entry and exit. A common mode filter is provided as standard for R8 frame drives. A US conduit plate is provided as standard. When ordering the optional brake chopper, it is internally mounted and adds no additional size to the unit.

NOTE: DC Bus connections are not available on the ACS800-U2 drives when the internal braking chopper option is not selected.
ACS800-U7-xxxx-x 75 to 600Hp

The ACS800-U7 is available from 75 to $600 \mathrm{Hp} @ 480 \mathrm{Vac}$ and 50 to $550 \mathrm{Hp} @ 600 \mathrm{Vac}$. It is available in a standard NEMA 1, optional filtered NEMA 1, or NEMA 12 filtered and ventilated enclosure. Drives are provided with a through the door interlocked, fused disconnect switch (lockable in the off position), and a control panel. A US conduit plate is provided as standard along with top entry input power and top exit motor leads. Bottom entry and exit are optional. A common mode filter is provided as standard for R8 frame drives. When ordering the optional brake chopper, it is internally mounted and adds no additional size to the unit.

ACS800-07-xxxx-x+C129+H359 700 to 2250Hp

The ACS800-07 is available from 700 to $2250 \mathrm{Hp} @ 480 \mathrm{~V}$ and 600 to $3000 \mathrm{Hp} @ 600 \mathrm{~V}$. Drives are available in a standard NEMA 1, optional filtered NEMA 1 or NEMA 12 filtered and ventilated enclosure and are configurable to $6 / 12$ - pulse supply (defined at time of ordering). Drive frames include a 6/12-pulse diode rectifier unit(s) (n*D4) and DC supplied inverter units ($n *$ R8i). Drives are provided with a through the door interlocked, disconnect switch (lockable in the off position) and input fusing after the disconnect (meeting NEC requirements). A control panel is provided as standard. A common motor terminal cubicle and a US conduit plate are provided standard. A common mode filter, dU/dT filter and coated circuit boards are provided as standard. An internal EMC filter rated for 2nd environment is provided with all drives. Optional brake chopper requires an additional cubicle.

Hardware Selection \& Description

Regenerative AC drives
A regenerative AC drive (also known as four quadrant) is a drive with the ability to return energy (power) back to the supply line. The ACS800-U11 and ACS800-17 has line side IGBT supply makes this possible and an active filter that keeps the supply a clean sinusoidal wave form. Conventional non-regenerative AC drives have a passive diode supply that cannot return energy to the supply line. The ability to return energy to the supply line allows you to save energy by regenerating the load energy to the line instead of to a braking chopper and external resistor. This eliminates the need for braking chopper, resistor hardware, and extra wiring for most regenerative applications.

ACS800-U11-xxxx-x

15 to 125 Hp
The ACS800-U11 is a 4 quadrant regenerative wall-mountable drive available from 7.5 to $60 \mathrm{Hp} @ 240 \mathrm{Vac}, 15$ to 125 Hp @ 480 Vac , and 40 to $75 \mathrm{Hp} @ 600 \mathrm{Vac}$. The ACS800-U11 is available in a NEMA 1 enclosure only and is provided with a control panel for user interface and parameter adjustment. Parameter adjustment for the rectifier section and inverter section are controlled from the same control panel. The ACS800-U11 is a complete regenerative $A C$ drive package requiring no user external interconnections or additional components. Regenerative drives offer very low harmonics and the ability to regenerate energy from overhauling loads back to the line source rather than dissipating it as heat energy in resistors.

ACS800-17-xxxx-x+C129

60 to 2000Hp
The ACS800-17 is a regenerative AC drive available from 60 to $2050 \mathrm{Hp} @ 480 \mathrm{Vac}$ and 40 to $2600 \mathrm{Hp} @ 600 \mathrm{Vac}$, designed as a free-standing floor mounted enclosure. Regenerative drives offer very low harmonics and the ability to regenerate energy from overhauling loads back to the line source rather than dissipating it as heat energy in resistors. The ACS800-17 is available in a NEMA 1 enclosure, optional NEMA 1 filtered or NEMA 12 filtered and ventilated enclosure. The drive is provided with a through the door interlock, fusible disconnect switch (lockable in the off position) in frame 2xR8i and greater with an Air Circuit Breaker, a main contactor, and LCL AC filter. A control panel for user interface, parameter adjustment, and drive operation is mounted on the front of the drive enclosure. A US conduit plate and 2nd environment filter are provided standard.

Hardware Selection \& Description

Ultra Low Harmonic AC drives

The ACS800-U31 and ACS800-37 provide advanced harmonic mitigation technology that does not require external filters or multipulse transformer. These drives utilize an active front end rectifier with a LCL (Inductor, Capacitor, Inductor) filter. The LCL filter reduces high frequency (above 1 kHz) harmonics and the active front end reduces lower frequency harmonics. The total harmonic current distortion is approximately 4% of the nominal inverter current rating at full load for the ACS800-U31 and -37. The Ultra Low Harmonic drives provide this exceptional harmonic mitigation with 3% input line imbalance, where other methods of harmonic mitigation depend on a balanced input line to meet their specified level of harmonic distortion.

ACS800-U31-xxxx-x

15 to 125 Hp
The ACS800-U31 is a wall mounted drive that provides a unique ultra low harmonic solution that is incorporated in the drive. The ACS800-U31 is available from 7.5 to $60 \mathrm{Hp} @ 240 \mathrm{Vac}$, 15 to $125 \mathrm{Hp} @ 480 \mathrm{Vac}$, and 40 to $75 \mathrm{Hp} @ 600 \mathrm{Vac}$. The drive is available in a NEMA 1 enclosure only and is provided with a control panel for user interface and parameter adjustment. The ACS800-U31 has exceptionally low line harmonic content and fulfills IEEE519-1992 harmonic requirements at the drive input terminals without external filtering devices or multi-pulse transformer.

ACS800-37-xxxx-x+C129

The ACS800-37 cabinet built drive provides a unique ultra low harmonic solution that is incorporated in the drive. The ACS800-37 is available from 60 to $2050 \mathrm{Hp} @ 480 \mathrm{Vac}$ and 40 to $2800 \mathrm{Hp} @ 600 \mathrm{Vac}$. This drive has exceptionally low line harmonic content and fulfills IEEE519-1992 harmonic requirements at the drive input terminals without external filtering devices or multi-pulse transformer. The ACS800-37 comes standard as a NEMA 1 enclosure with optional NEMA 1 filtered or NEMA 12 filtered and ventilated. The drive is provided with a through the door interlock, fusible disconnect switch (lockable in the off position) in frame $2 \times$ R8i and greater with an Air Circuit Breaker, a main contactor, and LCL AC filter. A control panel for user interface, parameter adjustment, and drive operation is mounted on the front of the drive enclosure. A US conduit plate is provided standard.

Definition of NEMA and IEC environmental ratings

NEMA and IEC environmental ratings can be confusing at times. Below is a summary of the rating definitions and recommendations for application of each type supported by the ACS800 AC Drive product family.
These definitions are taken directly from NEMA and IEC documentation. The recommendations are provided based on NEMA rated installations and not the IEC IP ratings.

NEMA 1, UL type 1

Indoor use primarily to provide a degree of protection against limited amounts of falling dirt.

IP 21

L (2) Protected against solid foreign objects of 12.5 mm diameter and greater
(1) Protected against vertically falling water drops

Recommendation for NEMA rating

Installation in clean environment such as an electrical room or in another enclosure with higher degree of protection. NEMA 1 rated is typically not the best selection for installation on industrial factory floors.

NEMA 1, UL type 1 (Filtered)
Indoor use primarily to provide a degree of protection against limited amounts of falling dirt. A 1 mm particle filter is added to the NEMA 1 enclosure rating to protect against some dust.
IP 42
(4) Protected against solid foreign objects of 1.0 mm diameter and greater
(2) Protected against vertically falling water drops when enclosure tilted up to 15 deg

Recommendation for NEMA rating
Installation in clean environment with minimal degree of dust or contaminant particles. Typically acceptable for installation in clean factory floors with limited dust exposure.
Regular preventative maintenance for filter changing or cleaning. Inspect drive for dust or particle build up that may limit cooling in the future, clean as needed.

NEMA 12, UL type 12 (Filtered \& Ventilated)

Indoor use primarily to provide a degree of protection against circulating dust, falling dirt, and dripping non corrosive liquids
IP 54

(5) Ingress of dust is not totally prevented, but dust shall not penetrate in a quantity to interfere with satisfactory operation of the apparatus or to impair safety
(4) Water splashed against the enclosure from any direction shall have no harmful effects

IP 5
L-(5) Ingress of dust is not totally prevented, but dust shall not penetrate in a quantity to interfere with satisfactory operation of the apparatus or to impair safety
(5) Water projected in jets against the enclosure from any direction shall have no harmful effects

Recommendation for NEMA rating

Installation in environments with moderate to significant dust and contaminant particles. Acceptable for most applications on factory floors where dust is present but spraying liquids are not.
Regular preventative maintenance for filter changing or cleaning. Inspect drive for dust or particle build up that may limit cooling in the future, clean as needed.

Basic Type Code Information

ACS800 Product Series

Construction
U1 = Wall Mounted
PC = Cabinet Drive
U2 = Floor Standing Drive
U7/07 = Cabinet Drive
U11 = Wall Mounted (Regenerative)
17 = Cabinet Drive (Regenerative)
U31 = Wall Mounted (Ultra Low Harmonic)
37 = Cabinet Drive (Ultra Low Harmonic)

Options
See Options List
$2=208,220,230,240 \mathrm{Vac}$
3 = 380, 400, 415Vac
5 = 380, 400, 415, 440, 460, 480, 500Vac
7 = 525,550,575, 600, 690Vac

Ordering Information

To order an ACS800 drive, select the appropriate type code from the following pages for your input voltage, motor current, and drive construction desired. This then represents the basic drive product. To add options, simply add a [+] to the end of the type code followed by the plus code of the desired option.
Adding a number in front of the option indicates the quantity of that option for the drive. A zero is used to delete a standard option. E.g. 2L501 means two (2) RDIO-01 modules, a 0 C111 means to delete the extended enclosure from the standard U2 type floor standing drive.
Example: ACS800-U1-0030-5+D150+L501+K462+P901 means add Brake Chopper, RDIO-01, and ControlNet fieldbus + D150 $=$ Brake Chopper, + L501 $=$ RDIO-01, + K462 $=$ ControlNet fieldbus
NOTE: When adding Plus Codes to an order, please provide them in Alphanumeric order.

Documentation

Standard Documentation Included with Standard ACS800 Drives

Standard drives include the ACS800-U1/PC/U2/U7/07/U11/17/U31/37 products. Standard documentation (provided in English only) includes the Firmware manual and the product specific Hardware manual. Documentation is shipped with the drive product. For cabinet type product (PC/U7/07/17/37), basic as-built drawings (basic electrical diagrams) are also included in the cabinet product shipment. As-built drawings are not available for non-cabinet type standard drive products. Standard product drawings may be downloaded from the ABB drives web page or the online drive configurator. The configurator is for Authorized Industrial Distributors.

Project Submittals

For project submittals, please utilize the online configurator to create these submittal documents.
The following documents may be selected to be included in the submittal:

Product Overview
Submittal Schedule
Clarifications and Exceptions
General Terms and Conditions
General Notes

Dimensional Drawings
Power Drawings
Connection Drawings
Engineering Data / Rating Tables

Non-Standard documentation requests for Standard Drive products

For non-standard documentation requirements, the online configurator and ABB web page should be utilized as appropriate. Additional documentation requirements that cannot be meet with the information provided here may be available at additional cost. For specific project documentation requirements, quotes may be provided by the factory sales team.

Drive kVA specific Plus Code definitions

+ Code	Short Description	Description
+A004	12 Pulse Input	Selects 12 pulse input load switch for ACS800-07 cabinet product
+B054	NEMA 1 - Filtered UL Type 1 (IP42)	Same as NEMA 1 but adds a dust filter. See definition of NEMA and IEC (page 16)
+B055	$\begin{gathered} \text { UL Type } 12 \\ \text { (IP54) } \end{gathered}$	Filtered and ventilated protection against dust. See definition of NEMA and IEC (page 16)
+B056	$\begin{gathered} \hline \text { UL Type } 12 \\ \text { (IP55) } \end{gathered}$	Filtered and ventilated protection against dust. See definition of NEMA and IEC (page 16)
+0C111	Delete Extension Enclosure	Removes extension enclosure from U2 product. The C111 option is required for Top Entry/Exit, if deleted unit will be Bottom Entry/Exit (do not add $+\mathrm{H} 350+\mathrm{H} 352$)
+C129	UL Approval for -07 type	Required plus code for ACS800-07 for UL approval. Adds 115 Vac aux ctrl, US conduit plate, Load Switch, Fuses, Top Entry\&Exit. (Delete +C134)
+C134	CSA Approval for -07 type	Optional plus code for ACS800-07 product for CSA approval. This option adds 115 Vac aux control voltage \& US conduit plate. (Delete +C129)
+D150	Brake Chopper	Adds internal brake chopper for faster decel time (factory installed only). Motor energy is dissipated to separate resistor bank. Resistors sold separately.
+E200	EMC/RFI 2nd Envir	2nd Environment EMC Filter internal to the drive, provides for Industrial app. RFI noise suppression. The E200 is for an unrestricted grounded network and is available for R2-R5. CE compliance is dependant on the system \& installation.
+E202	EMC/RFI 1st Envir	1st Environment EMC Filter provides for Commercial app. RFI noise suppression. The E202 is for a restricted grounded network and is available for R2-R8 drives. CE compliance is dependant on the system \& installation.
+E205	dU/dT Choke	dU/dT motor protecting output filters are designed to limit peak voltage and increase voltage rise time. Recommended for 600 Vac apps.
+E208	Common Mode Filt	Common Mode filters for control of radiated \& conducted emission on output of AC Drives. Available option for R7 and standard for R8. Factory installed only.
+E210	EMC/RFI 2nd Envir	2nd Environment EMC Filter, provides for Industrial app. RFI noise suppression. E210 is for unrestricted grounded/ungrounded network and available for R6R8 drives. CE compliance dependant on the system \& installation.
$\begin{aligned} & \hline+ \text { F250 } \\ & + \text { Q951 } \end{aligned}$	Line Contactor \& E-Stop Cat0	Input power contactor including an E-Stop pushbutton mounted on enclosure door. Available on U2 drives with enclosure extension and all cabinet drives.
$\begin{aligned} & +F 253 \\ & +F 260 \end{aligned}$	Load Switch \& Line Fuses	Load Switch \& semiconductor fuses includes additional load switch cubicle. Option is standard on all Cabinet product \& included in the +C129
$\begin{aligned} & \text { +H350 } \\ & +\mathrm{H} 352 \end{aligned}$	Bottom Entry Bottom Exit	Changes the cable entry \& exit to bottom for U2/07/U7/17/37, standard provided as top entry and exit.
+H350	Bottom Entry	Changes cable entry to bottom for 07/U7/17/37 drive products
+H352	Bottom Exit	Changes cable exit to bottom for 07/U7/17/37 drive products
+H351	Top Entry	Changes the cable entry to top for ACS800-07 400Vac drive products.
+H353	Top Exit	Changes the cable exit to top for ACS800-07 400Vac drive products.
+H357	European Cable Lead Through	Provides European type entry plate with clamping mechanism for grounding shielded power cables. Must be used in support of meeting CE EMC installation.
+H358	US Conduit Plate	Selects US conduit plate for cable entry and exit on ACS800-07 400Vac product. US conduit plate is standard on all other ACS800 products.
+H359	Common Motor terminal cubicle	Additional cubicle for common motor terminal connection in large cabinet drives
+P901	Coated Boards	Provides printed circuit boards in the drive product with a protective layer of epoxy coating designed to minimize corrosion from hazardous environments.
+Q950	Prevention of Unexpected Start	For U1/U4 drives this option provides connection to the control circuit via the AGPS option board, but does not include the required safety relay (customer supplied). For U7/07/17/37 drives this option provides a complete solution only requiring the customer supplied control input.
+Q951	E-Stop Cat 0	Provides for a Category 0 E-Stop and E-Stop push button on the cabinet door.

Notes for product selection

General Notes

$-I_{2 N}$: continuous base current at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$. Overload cycle $110 \% \mathrm{I}_{2 \mathrm{~N}}$ for 1 minute / 5 minutes allowed.
$-I_{\text {hd }}$: continuous base current at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$. Overload cycle $150 \% \mathrm{I}_{\text {hd }}$ for 1 minute $/ 5$ minutes allowed.

- $I_{\text {max }}$ current available for 10 seconds at start.
- Current ratings do not change with different supply voltages.
- The rated current of the ACS800 must be greater than or equal to the rated motor current to achieve the rated motor power given in the table.
- Horsepower ratings are based on NEMA motor ratings for typical 4-pole motors (1800 rpm). Check motor nameplate current for compatibility.
- Kilowatt ratings are based on IEC motor ratings for typical 4-pole motors (1500 rpm). Check motor nameplate current for compatibility.
- All ACS800-U1 models come with a US conduit box (conduit plate in NEMA 12) as standard.
- ACS800-02 product is no longer available. If the -02 type product is required, select ACS800-U2-xxxx-x+0C111

This will delete the extension enclosure and force Bottom Entry/Exit. Adding $+\mathrm{H} 350+\mathrm{H} 352$ is not required.

- ACS800-07 (400v) product has special requirements when ordering some options

For the US Conduit Plate, plus code +H 358 is required. This is not included as standard.

- NA: indicates the option is Not Available
- STD: indicates the option is included in the standard price
- INCL: indicates the option is included in the standard price, but requires the additional plus code

Specific Notes

(1) Overload may be limited to 5% at higher motor speeds (speed $>90 \%$ motor base speed) by the internal power limit of the drive.
(2) Overload may be limited to 40% at higher motor speeds (speed $>90 \%$ motor base speed) by the internal power limit of the drive.
(3) A higher rating may be available for some 4-pole 460 V high efficiency NEMA motors.
(4) Current rating available when ambient temp is $30^{\circ} \mathrm{C}$ or less, See the Hardware Manual for current rating at $40^{\circ} \mathrm{C}$.
(5) 50% overload is allowed if ambient temperature is $30^{\circ} \mathrm{C}$ or less, Overload is limited to 40% at $40^{\circ} \mathrm{C}$.
(6) The higher rating is available when output frequency is above 41 Hz .
(7) With dU/dT choke the maximum output frequency is limited to 120 Hz .
(8) US offering only, NEMA 12 selection requires 480 Vac line supply.
(9) Option Requires the extension enclosure, cannot be combined with +0 C 111

240Vac Ratings

3 -phase supply voltage $208,220,230,240$. The power ratings are valid at nominal voltage 240 Vac 60 Hz

	Type Code NEMA 1	$\begin{gathered} \mathrm{I}_{\max } \\ \text { Amps } \end{gathered}$	Nominal Ratings				Frame Size	NEMA 1 List Price		$\underset{\sim}{\mathscr{N}}=$	\vec{r}	$\stackrel{N}{\mathscr{\sigma}}$	$\stackrel{N}{\sim}$
			Normal (110	$\begin{aligned} & \text { ty }(\mathrm{CT}) \\ & \left.\mathrm{I}_{2 \mathrm{~N}}\right) \end{aligned}$	Heavy (150	$\begin{aligned} & y(C T) \\ & 2 H D) \end{aligned}$						$\underset{\sim}{\underset{\sim}{2}} \stackrel{\stackrel{N}{n}}{\varrho}$	$\underset{\sim}{2} \underset{\sim}{2}$
			$\begin{gathered} \mathrm{I}_{2 \mathrm{~N}} \\ \mathrm{Amps} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{N}} \\ & \mathrm{Hp} \end{aligned}$	$\begin{gathered} \mathrm{I}_{2 \mathrm{HD}} \\ \mathrm{Amps} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{P}_{\mathrm{HD}} \\ & \mathrm{Hp} \end{aligned}$				+A004	+B054	+B055	+B056
	ACS800-U1-0001-2+P901	6.5	4.7	1	3.5	0.75	R2		1,764	NA	NA	NA	373
	ACS800-U1-0002-2+P901	8.2	6.6	1.5	4.6	1	R2		1,779	NA	NA	NA	376
	ACS800-U1-0003-2+P901	10.8	8.1	2	6.6	1.5	R2	\$	1,814	NA	NA	NA	376
	ACS800-U1-0004-2+P901	13.8	11	3	7.5	2	R2	\$	1,831	NA	NA	NA	380
	ACS800-U1-0006-2+P901	24	21	5	13	3	R3	\$	1,961	NA	NA	NA	403
	ACS800-U1-0009-2+P901	32	27	7.5	17	5	R3	\$	2,262	NA	NA	NA	479
	ACS800-U1-0011-2+P901	46	34	10	25	7.5	R3	\$	2,590	NA	NA	NA	570
	ACS800-U1-0016-2+P901	62	42	15	31	10	R4	\$	3,188	NA	NA	NA	701
	ACS800-U1-0020-2+P901	72	54	$20^{(1)}$	42	$15^{(2)}$	R4	\$	3,855	NA	NA	NA	848
	ACS800-U1-0025-2+P901	86	69	25	54	$20^{(2)}$	R5	\$	4,709	NA	NA	NA	942
	ACS800-U1-0030-2+P901	112	80	30	68	$25^{(2)}$	R5	\$	5,633	NA	NA	NA	1127
	ACS800-U1-0040-2+P901	138	104	$40^{(1)}$	80	$30^{(2)}$	R5	\$	7,344	NA	NA	NA	1426
	ACS800-U1-0050-2+P901	164	132	50	104	40	R6	\$	8,803	NA	NA	NA	1693
	ACS800-U1-0060-2+P901	202	157	60	130	$50^{(2)}$	R6	\$	10,566	NA	NA	NA	1975
	ACS800-U1-0070-2+P901	282	192	75	154	$60^{(2)}$	R6	\$	13,201	NA	NA	NA	2316
	ACS800-U2-0080-2	326	211	75	170	60	R7	\$	20,725	NA	NA	NA	NA
	ACS800-U2-0100-2	404	248	100	202	75	R7	\$	27,754	NA	NA	NA	NA
	ACS800-U2-0120-2	432	290	100	$240^{(4)}$	75	R7	\$	30,758	NA	NA	NA	NA
	ACS800-U2-0140-2	588	396	150	316	125	R8	\$	41,744	NA	NA	NA	NA
	ACS800-U2-0170-2	588	440	150	340	125	R8	\$	46,753	NA	NA	NA	NA
	ACS800-U2-0210-2	588	516	200	370	150	R8	\$	55,898	NA	NA	NA	NA
	ACS800-U2-0230-2	840	598	200	480	200	R8	\$	63,292	NA	NA	NA	NA
	ACS800-U2-0260-2	1017	679	250	$590^{(5)}$	200	R8	\$	70,271	NA	NA	NA	NA
	ACS800-U2-0300-2	1017	704	250	$635^{(5)}$	250	R8	\$	78,873	NA	NA	NA	NA

General and specifically identified notes are at the beginning of the product selection (ratings) tables

ACS800 AC Drives

240Vac Ratings
3-phase supply voltage 208, 220, 230, 240 . The power ratings are valid at nominal voltage 240 Vac 60 Hz

									$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \underset{\sim}{E} \\ & \hline \end{aligned}$					
+0C111	+D150	+E200	+E202	+E205 ${ }^{(7)}$	+E208	+E210	$\begin{aligned} & \text { +H350 } \\ & \text { +H352 } \\ & \hline \end{aligned}$	+H350	+H352	+H357	+H359	+P901	+Q950	$\begin{array}{r} \text { +F250 } \\ \text { +Q951 } \\ \hline \end{array}$
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	175	111	176	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	175	111	176	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	455	221	351	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	455	221	351	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	455	221	351	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	813	NA	813	NA	NA	520	NA	NA	NA	300	NA	INCL	NA	NA
NA	813	NA	813	NA	NA	520	NA	NA	NA	300	NA	INCL	NA	NA
NA	813	NA	813	NA	NA	520	NA	NA	NA	300	NA	INCL	NA	NA
(-4271)	1075	NA	$1554^{(9)}$	NA	740	780	600	NA	NA	300	NA	490	NA	$1144^{(9)}$
(-4598)	1075	NA	$1554^{(9)}$	NA	740	780	600	NA	NA	300	NA	490	NA	$1524^{(9)}$
(-4598)	1875	NA	$1554{ }^{(9)}$	NA	740	780	600	NA	NA	300	NA	490	NA	$2236{ }^{(9)}$
(-6004)	2525	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$2795^{(9)}$
(-6004)	2525	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$2980^{(9)}$
(-8325)	3006	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$3569^{(9)}$
(-8325)	3006	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$3569^{(9)}$
(-10585)	3006	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$3916^{(9)}$
(-10585)	3006	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$4644^{(9)}$

400Vac Ratings

3 -phase supply voltage $380,400,415$. The power ratings are valid at nominal voltage 400 Vac 50 Hz

	Type CodeNEMA 1	$I_{\text {max }}$ Amps	Nominal Ratings				Frame Size	NEMA 1 List Price	\qquad+A004			
			$\begin{aligned} & \text { Normal Duty (CT) } \\ & \left(110 \% \mathrm{I}_{2 \mathrm{~N}}\right) \end{aligned}$		$\begin{gathered} \text { HeavyDuty (CT) } \\ \left(150 \% \mathrm{I}_{2 \mathrm{HD}}\right) \end{gathered}$							
			$\begin{array}{r} \mathrm{I}_{2 \mathrm{~N}} \\ \mathrm{Amps} \\ \hline \end{array}$	$\begin{gathered} \mathrm{P}_{\mathrm{N}} \\ \mathrm{~kW} \end{gathered}$	$\begin{gathered} \mathrm{I}_{2 \mathrm{HD}} \\ \text { Amps } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{\mathrm{HD}} \\ & \mathrm{~kW} \end{aligned}$						
	ACS800-U1-0004-5+P901	6.5	4.5	1.5	3.4	1.1	R2	\$ 1,487	NA	NA	NA	398
	ACS800-U1-0005-5+P901	8.2	5.6	2.2	4.2	1.5	R2	\$ 1,754	NA	NA	NA	398
	ACS800-U1-0006-5+P901	10.8	7.7	3	5.6	2.2	R2	\$ 1,754	NA	NA	NA	418
	ACS800-U1-0009-5+P901	13.8	10	4	7.5	3	R2	\$ 2,066	NA	NA	NA	502
	ACS800-U1-0011-5+P901	17.6	12	5.5	9.2	4	R2	\$ 2,296	NA	NA	NA	563
	ACS800-U1-0016-5+P901	24	18	7.5	13	5.5	R3	\$ 2,816	NA	NA	NA	704
	ACS800-U1-0020-5+P901	32	23	11	18	7.5	R3	\$ 3,390	NA	NA	NA	848
	ACS800-U1-0025-5+P901	46	31	15	23	11	R3	\$ 4,224	NA	NA	NA	1056
	ACS800-U1-0030-5+P901	62	39	18.5	32	15	R4	\$ 5,092	NA	NA	NA	1299
	ACS800-U1-0040-5+P901	72	44	22	36	18.5	R4	\$ 6,070	NA	NA	NA	1610
	ACS800-U1-0050-5+P901	86	61	30	50	22	R5	\$ 7,239	NA	NA	NA	1885
	ACS800-U1-0060-5+P901	112	75	37	60	30	R5	\$ 8,326	NA	NA	NA	2124
	ACS800-U1-0070-5+P901	138	88	45	69	37	R5	\$ 9,421	NA	NA	NA	2403
	ACS800-U1-0100-5+P901	164	115	55	88	45	R6	\$ 11,055	NA	NA	NA	2849
	ACS800-U1-0120-5+P901	202	145	75	113	55	R6	\$ 12,795	NA	NA	NA	3071
	ACS800-U1-0140-5+P901	282	163	90	141	75	R6	\$ 14,620	NA	NA	NA	3249
	ACS800-U1-0205-5+P901	326	254	160	215	132	R6	\$ 18,800	NA	NA	NA	3249
	ACS800-U2-0170-5	326	192	90	162	90	R7	\$ 22,972	NA	NA	NA	NA
	ACS800-U2-0210-5	384	240	132	192	90	R7	\$ 26,563	NA	NA	NA	NA
	ACS800-U2-0260-5	432	284	160	224	110	R7	\$ 31,591	NA	NA	NA	NA
	ACS800-U2-0320-5	588	435	200	340	160	R8	\$ 42,547	NA	NA	NA	NA
	ACS800-U2-0400-5	588	510	250	370	200	R8	\$ 48,491	NA	NA	NA	NA
	ACS800-U2-0440-5	840	545	315	490	250	R8	\$ 54,724	NA	NA	NA	NA
	ACS800-U2-0490-5	840	590	315	$515{ }^{(5)}$	250	R8	\$ 60,896	NA	NA	NA	NA
	ACS800-U2-0550-5	1017	670	355	$590{ }^{(5)}$	315	R8	\$ 67,673	NA	NA	NA	NA
	ACS800-U2-0610-5	1017	704	400	$632^{(5)}$	355	R8	\$ 73,979	NA	NA	NA	NA
	ACS800-07-0070-3	164	132	55	97	45	R6	\$ 14,110	NA	1274	3250	NA
	ACS800-07-0100-3	202	155	75	115	55	R6	\$ 17,029	NA	1274	3250	NA
	ACS800-07-0120-3	282	184	90	141	75	R6	\$ 19,651	NA	1274	3250	NA
	ACS800-07-0140-3	326	202	110	163	90	R7	\$ 22,737	NA	1274	3875	NA
	ACS800-07-0170-3	384	243	132	202	110	R7	\$ 26,686	NA	1274	3875	NA
	ACS800-07-0210-3	432	284	160	240	132	R7	\$ 30,845	NA	1274	3875	NA
	ACS800-07-0260-3	588	440	200	340	160	R8	\$ 37,725	NA	1274	4925	NA
	ACS800-07-0320-3	588	516	250	370	200	R8	\$ 46,055	NA	1274	4925	NA
	ACS800-07-0400-3	840	590	315	477	250	R8	\$ 57,862	NA	1274	4925	NA
	ACS800-07-0440-3	1017	679	355	$590{ }^{(5)}$	315	R8	\$ 64,904	NA	1274	4925	NA
	ACS800-07-0490-3	1017	704	400	$635{ }^{(5)}$	355	R8	\$ 72,967	NA	1274	4925	NA
	ACS800-07-0610-3*	1313	844	500	657	400	1D4+2R8i	\$ 91,945	3171	3822	6612	NA
	ACS800-07-0770-3*	1519	1067	630	830	450	2D4+2R8i	\$ 120,248	3875	3822	8839	NA
	ACS800-07-0870-3*	1876	1204	710	938	500	2D4+2R8i	\$ 135,685	4372	3822	8839	NA
	ACS800-07-1030-3*	1987	1394	800	1086	630	2D4+2R8i	\$ 153,608	4888	3822	8839	NA
	ACS800-07-1230-3*	2648	1700	1000	1324	710	2D4+3R8i	\$ 193,711	5960	5096	11534	NA
	ACS800-07-1540-3**	2950	2070	1200	1612	900	3D4+3R8i	\$ 235,871	INCL	5096	13746	NA
	ACS800-07-1850-3**	3983	2557	1450	1992	1120	3D4+4R8i	\$ 291,363	INCL	5096	16054	NA

* All -07 require plus codes + F253+F260+H359 for the included options listed in Hardware Selection \& Description at no additional charge
** All -07 require plus codes + A004 + F253+F260+H359 for the included options listed in Hardware Selection \& Description at no additional charge
ACS800-07-xxxx-3 units do not include UL listing, If UL listing is required, contact the factory for quote.

ACS800 AC Drives

400Vac Ratings

3-phase supply voltage $380,400,415$. The power ratings are valid at nominal voltage 400 Vac 50 Hz

				$\begin{aligned} & \stackrel{\rightharpoonup}{ } \frac{0}{0} \\ & \frac{\rightharpoonup}{0} \end{aligned}$				$\begin{aligned} & \text { Z } \\ & \text { ㄹ } \\ & \underset{\omega}{E} \\ & \text { E } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \underset{\sim}{\mid} \\ & \underset{\sim}{c} \end{aligned}$					
+0C111	+D150	+E200	+E202	+E205 ${ }^{(7)}$	+E208	+E210	$\begin{array}{r} +\mathrm{H} 350 \\ +\mathrm{H} 352 \\ \hline \end{array}$	+H350	+H352	+H357	+H359	+P901	+Q950	$\begin{array}{r} \hline+\mathrm{F} 250 \\ +\mathrm{Q} 951 \\ \hline \end{array}$
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	175	111	176	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	175	111	176	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	455	221	351	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	455	221	351	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	455	221	351	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	813	NA	813	NA	NA	520	NA	NA	NA	300	NA	INCL	NA	NA
NA	813	NA	813	NA	NA	520	NA	NA	NA	300	NA	INCL	NA	NA
NA	813	NA	813	NA	NA	520	NA	NA	NA	300	NA	INCL	NA	NA
NA	1075	NA	932	NA	NA	645	NA	NA	NA	300	NA	INCL	NA	NA
(-4271)	1075	NA	$1554{ }^{(9)}$	NA	740	780	600	NA	NA	300	NA	490	NA	$1144^{(9)}$
(-4598)	1075	NA	$1554{ }^{(9)}$	NA	740	780	600	NA	NA	300	NA	490	NA	$1524^{(9)}$
(-5529)	1875	NA	$1554^{(9)}$	NA	740	780	600	NA	NA	300	NA	490	NA	$2236{ }^{(9)}$
(-7332)	2525	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$2795^{(9)}$
(-8325)	2525	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$2980^{(9)}$
(-9459)	3006	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$3569^{(9)}$
(-10585)	3006	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$3569^{(9)}$
(-11756)	3006	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$3916^{(9)}$
(-12152)	3006	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$4644^{(9)}$
								$\begin{gathered} \hline \text { Top En } \\ +\mathrm{H} 351 \end{gathered}$	$\begin{aligned} & \text { Top Ex } \\ & \text { +H353 } \end{aligned}$	$\begin{aligned} & \text { Cnduit } \\ & \text { +H358 } \end{aligned}$				
NA	1075	NA	813	3797	NA	520	STD	600	600	600	NA	419	878	1144
NA	1075	NA	813	3797	NA	520	STD	600	600	600	NA	419	878	1144
NA	1075	NA	813	3797	NA	520	STD	600	600	600	NA	419	878	1144
NA	1075	NA	3686	3797	740	780	STD	600	600	600	NA	547	878	1144
NA	1075	NA	3686	3797	740	780	STD	600	600	600	NA	547	878	1524
NA	1875	NA	3686	4779	740	780	STD	600	600	600	NA	547	878	2236
NA	2525	NA	5929	4779	975	1033	STD	600	600	600	NA	547	878	2795
NA	2525	NA	5929	7591	975	1033	STD	600	600	600	NA	547	878	2980
NA	3006	NA	5929	9554	975	1033	STD	600	600	600	NA	547	878	3569
NA	3006	NA	5929	9554	975	1033	STD	600	600	600	NA	547	878	3916
NA	3006	NA	5929	9554	975	1033	STD	600	600	600	NA	547	878	4644
NA	19023	NA	6980	STD	STD	STD	STD	950	950	1710	INCL	STD	1696	6018
NA	19023	NA	NA	STD	STD	STD	STD	950	950	1710	INCL	STD	1696	9815
NA	27136	NA	NA	STD	STD	STD	STD	950	950	2280	INCL	STD	1696	9815
NA	27136	NA	NA	STD	STD	STD	STD	950	950	2280	INCL	STD	1696	9815
NA	NA	NA	NA	STD	STD	STD	STD	950	950	2850	INCL	STD	2548	9815
NA	NA	NA	NA	STD	STD	STD	STD	950	950	3420	INCL	STD	2548	13612
NA	NA	NA	NA	STD	STD	STD	STD	950	950	3990	INCL	STD	3396	13612

General and specifically identified notes are at the beginning of the product selection (ratings) tables

ACS800 AC Drives

480Vac Ratings

	Type CodeNEMA 1	$\begin{gathered} I_{\text {max }} \\ \text { Amps } \end{gathered}$	Nominal Ratings				Frame Size	NEMA 1 List Price					
			$\begin{aligned} & \text { Normal Duty (CT) } \\ & \left(110 \% \mathrm{I}_{2 \mathrm{~N}}\right) \end{aligned}$		HeavyDuty (CT) ($150 \% \mathrm{I}_{2 \mathrm{HD}}$)								
			$I_{2 N}$ Amps	$\begin{aligned} & \mathrm{P}_{\mathrm{N}} \\ & \mathrm{Hp} \end{aligned}$	$\begin{gathered} \mathrm{I}_{2 \mathrm{HD}} \\ \text { Amps } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{HD}} \\ & \mathrm{Hp} \\ & \hline \end{aligned}$							
	ACS800-U1-0004-5+P901	6.5	4.9	3	3.4	2	R2	\$	1,487	NA	NA	NA	398
	ACS800-U1-0005-5+P901	8.2	6.2	3	4.2	2	R2	\$	1,754	NA	NA	NA	398
	ACS800-U1-0006-5+P901	10.8	8.1	5	5.6	3	R2	\$	1,754	NA	NA	NA	418
	ACS800-U1-0009-5+P901	13.8	11	7.5	8.1	5	R2	\$	2,066	NA	NA	NA	502
	ACS800-U1-0011-5+P901	17.6	14	10	11	7.5	R2	\$	2,296	NA	NA	NA	563
	ACS800-U1-0016-5+P901	24	21	15	15	10	R3	\$	2,816	NA	NA	NA	704
	ACS800-U1-0020-5+P901	32	27	20	21	15	R3	\$	3,390	NA	NA	NA	848
	ACS800-U1-0025-5+P901	46	34	25	27	20	R3	\$	4,224	NA	NA	NA	1056
	ACS800-U1-0030-5+P901	62	42	30	34	25	R4	\$	5,092	NA	NA	NA	1299
	ACS800-U1-0040-5+P901	72	52	40	37	$30^{(3)}$	R4	\$	6,070	NA	NA	NA	1610
	ACS800-U1-0050-5+P901	86	65	50	52	40	R5	\$	7,239	NA	NA	NA	1885
	ACS800-U1-0060-5+P901	112	79	60	65	50	R5	\$	8,326	NA	NA	NA	2124
	ACS800-U1-0070-5+P901	138	96	75	77	60	R5	\$	9,421	NA	NA	NA	2403
	ACS800-U1-0100-5+P901	164	124	100	96	75	R6	\$	11,055	NA	NA	NA	2849
	ACS800-U1-0120-5+P901	202	157	125	124	100	R6	\$	12,795	NA	NA	NA	3071
	ACS800-U1-0140-5+P901	282	180	150	156	125	R6	\$	14,620	NA	NA	NA	3249
	ACS800-U1-0205-5+P901	326	254	200	215	150	R6	\$	18,800	NA	NA	NA	3249
	ACS800-PC-0170-5	326	192	150	162	125	R7	\$	20,884	NA	NA	$3250^{(8)}$	NA
	ACS800-PC-0210-5	384	240	200	192	150	R7	\$	23,480	NA	NA	$3250^{(8)}$	NA
	ACS800-PC-0270-5	480	316	250	240	200	R8	\$	28,432	NA	NA	$3250^{(8)}$	NA
	ACS800-PC-0300-5	568	361	300	302	250	R8	\$	32,994	NA	NA	$3250^{(8)}$	NA
	ACS800-PC-0320-5	588	435	350	340	250	R8	\$	38,292	NA	NA	$3250^{(8)}$	NA
	ACS800-PC-0400-5	588	510	400	370	300	R8	\$	43,642	NA	NA	$3250^{(8)}$	NA
	ACS800-PC-0440-5+B055	840	545	450	490	400	R8	\$	49,476	NA	NA	$\mathrm{INCL}{ }^{(8)}$	NA
	ACS800-PC-0490-5+B055	840	590	500	$515^{(5)}$	450	R8	\$	55,309	NA	NA	$\mathrm{INCL}{ }^{(8)}$	NA
	ACS800-PC-0550-5+B055	1017	670	550	$590^{(5)}$	500	R8	\$	62,033	NA	NA	$\mathrm{INCL}{ }^{(8)}$	NA
	ACS800-PC-0610-5+B055	1017	704	600	$590^{(5)}$	500	R8	\$	68,455	NA	NA	$\mathrm{INCL}{ }^{(8)}$	NA
	ACS800-U2-0170-5	326	192	150	162	125	R7	\$	22,972	NA	NA	NA	NA
	ACS800-U2-0210-5	384	240	200	192	150	R7	\$	26,563	NA	NA	NA	NA
	ACS800-U2-0260-5	432	286	$200^{(3)}$	224	150	R7	\$	31,591	NA	NA	NA	NA
	ACS800-U2-0270-5	480	316	250	240	200	R8	\$	31,591	NA	NA	NA	NA
	ACS800-U2-0300-5	568	361	300	302	250	R8	\$	36,660	NA	NA	NA	NA
	ACS800-U2-0320-5	588	435	350	340	250	R8	\$	42,547	NA	NA	NA	NA
	ACS800-U2-0400-5	588	510	400	370	300	R8	\$	48,491	NA	NA	NA	NA
	ACS800-U2-0440-5	840	545	450	490	400	R8	\$	54,724	NA	NA	NA	NA
	ACS800-U2-0490-5	840	590	500	$515^{(5)}$	450	R8	\$	60,896	NA	NA	NA	NA
	ACS800-U2-0550-5	1017	670	550	$590^{(5)}$	500	R8	\$	67,673	NA	NA	NA	NA
	ACS800-U2-0610-5	1017	704	600	$590^{(5)}$	500	R8	\$	73,979	NA	NA	NA	NA

[^0]
ACS800 AC Drives

480Vac Ratings

3 -phase supply voltage $380,400,415,460,480,500$. The power ratings are valid at nominal voltage 480 Vac 60 Hz

				$\begin{aligned} & \stackrel{\rightharpoonup}{ } \frac{0}{\circ} \\ & \stackrel{\rightharpoonup}{0} \frac{1}{\mathrm{O}} \end{aligned}$					$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \underset{\sim}{\mid} \\ & \underset{\sim}{c} \end{aligned}$					
+0C111	+D150	+E200	+E202	+E205 ${ }^{(7)}$	+E208	+E210	$\begin{aligned} & \hline+\mathrm{H} 350 \\ & +\mathrm{H} 352 \\ & \hline \end{aligned}$	+H350	+H352	+H357	+H359	+P901	+Q950	$\begin{array}{r} \hline+\mathrm{F} 250 \\ +\mathrm{Q} 951 \\ \hline \end{array}$
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	STD	87	140	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	175	111	176	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	175	111	176	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	455	221	351	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	455	221	351	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	455	221	351	NA	NA	NA	NA	NA	NA	300	NA	INCL	NA	NA
NA	813	NA	813	NA	NA	520	NA	NA	NA	300	NA	INCL	NA	NA
NA	813	NA	813	NA	NA	520	NA	NA	NA	300	NA	INCL	NA	NA
NA	813	NA	813	NA	NA	520	NA	NA	NA	300	NA	INCL	NA	NA
NA	1075	NA	932	NA	NA	645	NA	NA	NA	300	NA	INCL	NA	NA
NA	1075	NA	NA	NA	STD	780	NA	NA	NA	NA	NA	STD	NA	1144
NA	1075	NA	NA	NA	STD	780	NA	NA	NA	NA	NA	STD	NA	1524
NA	1875	NA	NA	NA	STD	STD	NA	NA	NA	NA	NA	STD	NA	2236
NA	2525	NA	NA	NA	STD	STD	NA	NA	NA	NA	NA	STD	NA	2616
NA	2525	NA	NA	NA	STD	STD	NA	NA	NA	NA	NA	STD	NA	2795
NA	2525	NA	NA	NA	STD	STD	NA	NA	NA	NA	NA	STD	NA	2980
NA	3006	NA	NA	NA	STD	STD	NA	NA	NA	NA	NA	STD	NA	3569
NA	3006	NA	NA	NA	STD	STD	NA	NA	NA	NA	NA	STD	NA	3569
NA	3006	NA	NA	NA	STD	STD	NA	NA	NA	NA	NA	STD	NA	3916
NA	3006	NA	NA	NA	STD	STD	NA	NA	NA	NA	NA	STD	NA	4644
(-4271)	1075	NA	$1554^{(9)}$	NA	740	780	600	NA	NA	300	NA	490	NA	$1144^{(9)}$
(-4598)	1075	NA	$1554{ }^{(9)}$	NA	740	780	600	NA	NA	300	NA	490	NA	$1524{ }^{(9)}$
(-5529)	1875	NA	$1554^{(9)}$	NA	740	780	600	NA	NA	300	NA	490	NA	$2236{ }^{(9)}$
(-5529)	1875	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$2236{ }^{(9)}$
(-6004)	2525	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$2616^{(9)}$
(-7332)	2525	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$2795^{(9)}$
(-8325)	2525	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$2980^{(9)}$
(-9459)	3006	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$3569^{(9)}$
(-10585)	3006	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	3569 ${ }^{(9)}$
(-11756)	3006	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$3916^{(9)}$
(-12152)	3006	NA	$2074{ }^{(9)}$	NA	STD	1033	600	NA	NA	300	NA	490	NA	$4644^{(9)}$

General and specifically identified notes are at the beginning of the product selection (ratings) tables

480Vac Ratings - Continued

3 -phase supply voltage 380, 400, 415, 460, 480,500. The power ratings are valid at nominal voltage 480 Vac 60 Hz

	Type Code	$\begin{gathered} I_{\max } \\ \text { Amps } \end{gathered}$	Nominal Ratings				Frame Size	NEMA 1 List Price					
			Normal Duty (CT) (110\% I $\mathrm{I}_{2 N}$)		HeavyDuty (CT) ($150 \% \mathrm{I}_{\text {2HD }}$)								
			$I_{2 N}$ Amps	$\begin{aligned} & \mathrm{P}_{\mathrm{N}} \\ & \mathrm{Hn} \end{aligned}$	$I_{\text {2HD }}$ Amps	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{HD}} \\ & \mathrm{Hp} \\ & \hline \end{aligned}$							
	ACS800-U7-0100-5	164	124	100	96	75	R6	\$	14,760	NA	1274	3250	NA
	ACS800-U7-0120-5	202	157	125	124	100	R6	\$	17,947	NA	1274	3250	NA
	ACS800-U7-0140-5	282	180	150	156	125	R6	\$	20,810	NA	1274	3250	NA
	ACS800-U7-0170-5	326	192	150	162	125	R7	\$	21,737	NA	1274	3875	NA
	ACS800-U7-0210-5	384	240	200	192	150	R7	\$	25,716	NA	1274	3875	NA
	ACS800-U7-0260-5	432	286	$200^{(3)}$	224	150	R7	\$	31,221	NA	1274	3875	NA
	ACS800-U7-0270-5	480	316	250	240	200	R8	\$	31,221	NA	1274	4925	NA
	ACS800-U7-0300-5	568	361	300	302	250	R8	\$	35,876	NA	1274	4925	NA
	ACS800-U7-0320-5	588	435	350	340	250	R8	\$	42,291	NA	1274	4925	NA
	ACS800-U7-0400-5	588	510	400	370	300	R8	\$	47,355	NA	1274	4925	NA
	ACS800-U7-0440-5	840	545	450	490	400	R8	\$	53,153	NA	1274	4925	NA
	ACS800-U7-0490-5	840	590	500	$515^{(5)}$	450	R8	\$	58,821	NA	1274	4925	NA
	ACS800-U7-0550-5	1017	670	550	$590^{(5)}$	500	R8	\$	66,565	NA	1274	4925	NA
	ACS800-U7-0610-5	1017	704	600	$590^{(5)}$	500	R8	\$	73,367	NA	1274	4925	NA
	ACS800-07-0760-5*	1321	848	700	660	550	1D4+2R8i	\$	81,726	2755	3822	6612	NA
	ACS800-07-0910-5*	1524	1008	900	785	700	2D4+2R8i	\$	110,485	3854	3822	8839	NA
	ACS800-07-1090-5*	1882	1208	1000	941	800	2D4+2R8i	\$	130,359	4555	3822	8839	NA
	ACS800-07-1210-5*	1991	1317	1150	1026	900	2D4+2R8i	\$	155,485	5004	3822	8839	NA
	ACS800-07-1540-5*	2655	1704	1500	1328	1150	2D4+3R8i	\$	209,710	6291	5096	11534	NA
	ACS800-07-1820-5**	2956	1956	1750	1524	1250	3D4+3R8i	\$	249,919	INCL	5096	13746	NA
	ACS800-07-2310-5**	3901	2563	2250	1997	1750	3D4+4R8i	\$	321,089	INCL	5096	16054	NA

* ACS800-07 require plus codes $+\mathrm{C} 129+\mathrm{H} 359$ for the included options listed in Hardware Selection \& Description at no additional charge
** $\mathrm{ACS} 800-07$ require plus codes $+\mathrm{A} 004+\mathrm{C} 129+\mathrm{H} 359$ for the included options listed in Hardware Selection \& Description at no additional charge

ACS800 AC Drives

480Vac Ratings - Continued
3-phase supply voltage $380,400,415,460,480,500$. The power ratings are valid at nominal voltage 480 Vac 60 Hz

				$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \stackrel{0}{\circ} \\ & \frac{\rightharpoonup}{0} \end{aligned}$										
+0C111	+D150	+E200	+E202	+E205 ${ }^{(7)}$	+E208	+E210	$\begin{array}{r} +\mathrm{H} 350 \\ +\mathrm{H} 352 \\ \hline \end{array}$	+H350	+H352	+H357	+H359	+P901	+Q950	$\begin{aligned} & \hline \text { +F250 } \\ & + \text { Q951 } \end{aligned}$
NA	1075	NA	813	3797	NA	520	1200	600	600	600	NA	419	878	1144
NA	1075	NA	813	3797	NA	520	1200	600	600	600	NA	419	878	1144
NA	1075	NA	813	3797	NA	520	1200	600	600	600	NA	419	878	1144
NA	1075	NA	3686	3797	740	780	1200	600	600	600	NA	547	878	1144
NA	1075	NA	3686	3797	740	780	1200	600	600	600	NA	547	878	1524
NA	1875	NA	3686	4779	740	780	1200	600	600	600	NA	547	878	2236
NA	1875	NA	5929	4779	STD	1033	1200	600	600	600	NA	547	878	2236
NA	2525	NA	5929	4779	STD	1033	1200	600	600	600	NA	547	878	2616
NA	2525	NA	5929	4779	STD	1033	1200	600	600	600	NA	547	878	2795
NA	2525	NA	5929	7591	STD	1033	1200	600	600	600	NA	547	878	2980
NA	3006	NA	5929	9554	STD	1033	1200	600	600	600	NA	547	878	3569
NA	3006	NA	5929	9554	STD	1033	1200	600	600	600	NA	547	878	3569
NA	3006	NA	5929	9554	STD	1033	1200	600	600	600	NA	547	878	3916
NA	3006	NA	5929	9554	STD	1033	1200	600	600	600	NA	547	878	4644
NA	17942	NA	6980	STD	STD	STD	1900	950	950	1710	INCL	STD	1696	6018
NA	17942	NA	NA	STD	STD	STD	1900	950	950	1710	INCL	STD	1696	9815
NA	26913	NA	NA	STD	STD	STD	1900	950	950	2280	INCL	STD	1696	9815
NA	26913	NA	NA	STD	STD	STD	1900	950	950	2280	INCL	STD	1696	9815
NA	NA	NA	NA	STD	STD	STD	1900	950	950	2850	INCL	STD	2548	9815
NA	NA	NA	NA	STD	STD	STD	1900	950	950	3420	INCL	STD	2548	13612
NA	NA	NA	NA	STD	STD	STD	1900	950	950	3990	INCL	STD	3396	13612

General and specifically identified notes are at the beginning of the product selection (ratings) tables

ACS800 AC Drives

600Vac Ratings

3 -phase supply voltage $525,550,575,600,690$. The power ratings are valid at nominal voltage 575 Vac 60 Hz

	Type Code NEMA 1	$\begin{gathered} I_{\max } \\ \text { Amps } \end{gathered}$	Nominal Ratings				Frame Size	NEMA 1 List Price		\cdots	$\stackrel{N}{\sim} \curvearrowright$	$\stackrel{N}{\sim}$
			Normal (110\%	$\begin{aligned} & \text { Duty (CT) } \\ & \left.\% I_{2 N}\right) \end{aligned}$	Heavy (150	$\begin{aligned} & \text { ty (CT) } \\ & \left.\mathrm{I}_{2 \mathrm{HD}}\right) \end{aligned}$			$\begin{aligned} & \overline{\bar{Z}} \\ & \text { N } \\ & \underset{\sim}{I} \end{aligned}$		$\underset{\sim}{\underset{\sim}{2}} \underset{\sim}{\circ}$	$\underset{\sim}{2} \stackrel{\stackrel{n}{2}}{\stackrel{n}{\circ}}$
			$I_{2 N}$ Amps	$\begin{aligned} & \mathrm{P}_{\mathrm{N}} \\ & \mathrm{Hp} \end{aligned}$	$\begin{gathered} \mathrm{I}_{2 \mathrm{HD}} \\ \mathrm{Amps} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{P}_{\mathrm{HD}} \\ & \mathrm{Hp} \end{aligned}$			+A004	+B054	+B055	+B056
Wall Mounted Drives	ACS800-U1-0011-7+P901	14	11.5	10	8.5	5	R4	\$ 3,872	NA	NA	NA	617
	ACS800-U1-0016-7+P901	19	15	10	11	10	R4	\$ 4,261	NA	NA	NA	688
	ACS800-U1-0020-7+P901	28	20	15	15	10	R4	\$ 5,197	NA	NA	NA	821
	ACS800-U1-0025-7+P901	38	23	20	19	15	R4	\$ 6,442	NA	NA	NA	1027
	ACS800-U1-0030-7+P901	44	30	25	22	20	R4	\$ 7,592	NA	NA	NA	1268
	ACS800-U1-0040-7+P901	54	34	30	27	25	R4	\$ 8,497	NA	NA	NA	1418
	ACS800-U1-0050-7+P901	68	46	40	34	30	R5	\$ 9,847	NA	NA	NA	1645
	ACS800-U1-0060-7+P901	84	52	50	42	40	R5	\$ 11,341	NA	NA	NA	1964
	ACS800-U1-0070-7+P901	104	73	60	54	50	R6	\$ 12,872	NA	NA	NA	2207
	ACS800-U1-0100-7+P901	124	86	75	62	60	R6	\$ 14,613	NA	NA	NA	2530
	ACS800-U1-0120-7+P901	172	108	100	86	75	R6	\$ 16,835	NA	NA	NA	2928
	ACS800-U1-0145-7+P901	245	125	125	99	100	R6	\$ 18,594	NA	NA	NA	2928
	ACS800-U1-0175-7+P901	245	155	150	131	125	R6	\$ 20,715	NA	NA	NA	3249
	ACS800-U1-0205-7+P901	245	192	200	147	150	R6	\$ 23,958	NA	NA	NA	3249
	ACS800-U7-0070-7	104	73	60	54	50	R6	\$ 17,574	NA	1274	3250	NA
	ACS800-U7-0100-7	124	86	75	62	60	R6	\$ 19,265	NA	1274	3250	NA
	ACS800-U7-0120-7	172	108	100	86	75	R6	\$ 21,534	NA	1274	3250	NA
	ACS800-U7-0140-7	190	125	125	95	$100^{(3)}$	R7	\$ 24,202	NA	1274	3875	NA
	ACS800-U7-0170-7	263	155	150	131	125	R7	\$ 27,952	NA	1274	3875	NA
	ACS800-U7-0210-7	294	165/195 ${ }^{(6)}$	$150 / 200^{(6)}$	147	150	R7	\$ 29,148	NA	1274	3875	NA
	ACS800-U7-0260-7	326	$175 / 212^{(6)}$	150/200 ${ }^{(6)}$	163	150	R7	\$ 33,872	NA	1274	3875	NA
	ACS800-U7-0320-7	433	290	300	216	200	R8	\$ 45,022	NA	1274	4925	NA
	ACS800-U7-0400-7	548	344	350	274	250	R8	\$ 51,842	NA	1274	4925	NA
	ACS800-U7-0440-7	656	387	400	328	$350{ }^{(3)}$	R8	\$ 58,776	NA	1274	4925	NA
	ACS800-U7-0490-7	775	426	450	387	400	R8	\$ 66,067	NA	1274	4925	NA
	ACS800-U7-0550-7	853	482	500	426	450	R8	\$ 73,389	NA	1274	4925	NA
	ACS800-U7-0610-7	964	537	550	482	500	R8	\$ 80,513	NA	1274	4925	NA
	ACS800-07-0750-7*	939	603	600	470	500	1D4+2R8i	\$ 87,799	3212	3822	7024	NA
	ACS800-07-0870-7*	1091	700	750	545	600	1D4+2R8i	\$ 110,127	3842	3822	7024	NA
	ACS800-07-1060-7*	1324	850	900	662	700	1D4+2R8i	\$ 132,467	4568	3822	7024	NA
	ACS800-07-1160-7*	1426	915	1000	713	800	2D4+2R8i	\$ 148,288	5059	3822	10380	NA
	ACS800-07-1500-7*	1882	1208	1250	941	1000	2D4+3R8i	\$ 188,994	6083	5096	12285	NA
	ACS800-07-1740-7*	2115	1357	1500	1058	1150	2D4+3R8i	\$ 227,046	7307	5096	12285	NA
	ACS800-07-2120-7*	2654	1703	1850	1327	1400	2D4+4R8i	\$ 279,222	8471	5096	16753	NA
	ACS800-07-2320-7**	2792	1791	2000	1396	1500	3D4+4R8i	\$ 305,705	INCL	6370	16753	NA
	ACS800-07-2900-7**	3472	2228	2400	1736	1900	3D4+5R8i	\$ 370,246	INCL	6370	20364	NA
	ACS800-07-3190-7**	3987	2558	2750	1993	2250	3D4+6R8i	\$ 424,909	INCL	6370	21245	NA
	ACS800-07-3490-7**	4144	2659	3000	2072	2300	4D4+6R8i	\$ 467,756	INCL	6370	23388	NA

* All -07 require plus codes $+\mathrm{C} 129+\mathrm{H} 359$ for the included options listed in Hardware Selection \& Description at no additional charge
** All -07 require plus codes $+\mathrm{A} 004+\mathrm{C} 129+\mathrm{H} 359$ for the included options listed in Hardware Selection \& Description at no additional charge

ACS800 AC Drives

600Vac Ratings
3 -phase supply voltage $525,550,575,600,690$. The power ratings are valid at nominal voltage 575 Vac 60 Hz

+0C111	+D150	+E200	+E202	+E205 ${ }^{(7)}$	+E208	+E210	$\begin{aligned} & \text { +H350 } \\ & +\mathrm{H} 352 \end{aligned}$	+H350	+H352	+H357	+H359	+P901	+Q950	$\begin{aligned} & + \text { F250 } \\ & +\mathrm{Q} 951 \end{aligned}$
NA	STD	111	NA	INCL	NA	NA								
NA	STD	111	NA	INCL	NA	NA								
NA	STD	111	NA	INCL	NA	NA								
NA	STD	111	NA	INCL	NA	NA								
NA	STD	111	NA	INCL	NA	NA								
NA	STD	111	NA	INCL	NA	NA								
NA	455	221	NA	INCL	NA	NA								
NA	455	221	NA	INCL	NA	NA								
NA	813	NA	NA	NA	NA	520	NA	NA	NA	NA	NA	INCL	NA	NA
NA	813	NA	NA	NA	NA	520	NA	NA	NA	NA	NA	INCL	NA	NA
NA	813	NA	NA	NA	NA	520	NA	NA	NA	NA	NA	INCL	NA	NA
NA	813	NA	NA	NA	NA	520	NA	NA	NA	NA	NA	INCL	NA	NA
NA	1075	NA	NA	NA	NA	645	NA	NA	NA	NA	NA	INCL	NA	NA
NA	1075	NA	NA	NA	NA	645	NA	NA	NA	NA	NA	INCL	NA	NA
NA	1075	NA	NA	3797	NA	520	1200	600	600	600	NA	419	878	1144
NA	1075	NA	NA	3797	NA	520	1200	600	600	600	NA	419	878	1144
NA	1075	NA	NA	3797	NA	520	1200	600	600	600	NA	419	878	1144
NA	1075	NA	NA	3797	740	780	1200	600	600	600	NA	547	878	1144
NA	1075	NA	NA	3797	740	780	1200	600	600	600	NA	547	878	1524
NA	1075	NA	NA	4779	740	780	1200	600	600	600	NA	547	878	2236
NA	1875	NA	NA	4779	740	780	1200	600	600	600	NA	547	878	2795
NA	2525	NA	NA	7591	STD	1033	1200	600	600	600	NA	547	878	2980
NA	2525	NA	NA	7591	STD	1033	1200	600	600	600	NA	547	878	3569
NA	3006	NA	NA	9554	STD	1033	1200	600	600	600	NA	547	878	3569
NA	3006	NA	NA	9554	STD	1033	1200	600	600	600	NA	547	878	3916
NA	3006	NA	NA	9554	STD	1033	1200	600	600	600	NA	547	878	4644
NA	3006	NA	NA	9554	STD	1033	1200	600	600	600	NA	547	878	4644
NA	19952	NA	NA	STD	STD	STD	1900	950	950	1710	INCL	STD	1696	6018
NA	19952	NA	NA	STD	STD	STD	1900	950	950	1710	INCL	STD	1696	6018
NA	29913	NA	NA	STD	STD	STD	1900	950	950	1710	INCL	STD	1696	6018
NA	29913	NA	NA	STD	STD	STD	1900	950	950	2280	INCL	STD	1696	9815
NA	NA	NA	NA	STD	STD	STD	1900	950	950	2850	INCL	STD	2548	9815
NA	NA	NA	NA	STD	STD	STD	1900	950	950	2850	INCL	STD	2548	9815
NA	NA	NA	NA	STD	STD	STD	1900	950	950	3990	INCL	STD	3396	9815
NA	NA	NA	NA	STD	STD	STD	1900	950	950	3990	INCL	STD	3396	13612
NA	NA	NA	NA	STD	STD	STD	1900	950	950	5130	INCL	STD	5093	13612
NA	NA	NA	NA	STD	STD	STD	1900	950	950	5130	INCL	STD	5093	13612
NA	NA	NA	NA	STD	STD	STD	1900	950	950	5710	INCL	STD	5093	17413

General and specifically identified notes are at the beginning of the product selection (ratings) tables

Regenerative Drives, 240Vac

3 -phase supply voltage $208,220,230,240$. The power ratings are valid at nominal voltage 240 Vac 60 Hz

	Type Code NEMA 1	$\begin{gathered} \mathrm{I}_{\max } \\ \text { Amps } \end{gathered}$	Nominal Ratings				Frame Size	NEMA 1 List Price					
			$\begin{aligned} & \text { Normal Duty (CT) } \\ & \left(110 \% \mathrm{I}_{2 \mathrm{~N}}\right) \end{aligned}$		HeavyDuty (CT) ($150 \% \mathrm{I}_{\text {2HD }}$)								
			$\begin{array}{r} \mathrm{I}_{2 \mathrm{~N}} \\ \mathrm{Amps} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{P}_{\mathrm{N}} \\ & \mathrm{Hp} \end{aligned}$	$\begin{gathered} \hline \mathrm{I}_{2 \mathrm{HD}} \\ \mathrm{Amps} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{P}_{\mathrm{HD}} \\ & \mathrm{Hp} \end{aligned}$				+A004	+B054	+B055	+B056
$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \overline{0} \\ & \bar{N} \\ & 3 \end{aligned}$	ACS800-U11-0011-2	52	32.2	10	26	7.5	R5	\$	7,736	NA	NA	NA	NA
	ACS800-U11-0016-2	68	44.7	15	38	10	R5	\$	9,194	NA	NA	NA	NA
	ACS800-U11-0020-2	90	56.1	20	45	10	R5	\$	10,721	NA	NA	NA	NA
	ACS800-U11-0025-2	118	69	25	59	15	R5	\$	12,969	NA	NA	NA	NA
	ACS800-U11-0030-2	144	83	30	72	20	R5	\$	15,209	NA	NA	NA	NA
	ACS800-U11-0040-2	168	114	40	84	25	R6	\$	19,094	NA	NA	NA	NA
	ACS800-U11-0050-2	234	143	50	117	30	R6	\$	22,231	NA	NA	NA	NA
	ACS800-U11-0060-2	234	157	60	132	40	R6	\$	25,937	NA	NA	NA	NA

Regenerative Drives, 480Vac

3 -phase supply voltage $380,400,415,460,480,500$. The power ratings are valid at nominal voltage 480 Vac 60 Hz

	Type Code NEMA 1	$\begin{gathered} I_{\max } \\ \text { Amps } \end{gathered}$	Nominal Ratings				Frame Size	NEMA 1 List Price	$\stackrel{\otimes}{\mathscr{N}}=$	$\overrightarrow{-1}$	$\underset{\sim}{\sim}$	$\stackrel{N}{\mathrm{~N}}$
			Normal (110	$\begin{aligned} & \text { ty }(C T) \\ & \left.I_{2 N}\right) \end{aligned}$	HeavyD (150	$\begin{aligned} & y(C T) \\ & \left.I_{2 H D}\right) \end{aligned}$			$\begin{aligned} & \overrightarrow{0} \\ & \underset{\sim}{\mathrm{O}} \\ & \end{aligned}$		$\stackrel{\text { N }}{2} \stackrel{\text { N }}{\ominus}$	
			$I_{2 N}$ Amps	$\begin{aligned} & \mathrm{P}_{\mathrm{N}} \\ & \mathrm{Hp} \end{aligned}$	$I_{2 H D}$ Amps	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{HD}} \\ & \mathrm{Hp} \end{aligned}$			+A004	+B054	+B055	+B056
	ACS800-U11-0020-5	52	29	20	25	15	R5	\$ 7,797	NA	NA	NA	NA
	ACS800-U11-0025-5	61	34	25	30	20	R5	\$ 9,293	NA	NA	NA	NA
	ACS800-U11-0030-5	68	45	30	37	25	R5	\$ 10,392	NA	NA	NA	NA
	ACS800-U11-0040-5	90	55	40	47	30	R5	\$ 12,388	NA	NA	NA	NA
	ACS800-U11-0050-5	118	67	50	57	40	R5	\$ 15,082	NA	NA	NA	NA
	ACS800-U11-0060-5	144	78	60	62	50	R5	\$ 17,417	NA	NA	NA	NA
	ACS800-U11-0070-5	168	114	75	88	60	R6	\$ 20,187	NA	NA	NA	NA
	ACS800-U11-0100-5	234	132	100	114	75	R6	\$ 24,504	NA	NA	NA	NA
	ACS800-U11-0120-5	264	156	125	125	100	R6	\$ 28,789	NA	NA	NA	NA
	ACS800-17-0070-5+C129	168	114	75	88	60	R6	\$ 26,239	NA	1274	3250	NA
	ACS800-17-0100-5+C129	234	132	100	114	75	R6	\$ 31,469	NA	1274	3250	NA
	ACS800-17-0120-5+C129	264	156	125	125	100	R6	\$ 36,693	NA	1274	3250	NA
	ACS800-17-0170-5+C129	291	192	150	156	125	R7i	\$ 42,172	NA	1274	3250	NA
	ACS800-17-0210-5+C129	356	240	200	183	150	R7i	\$ 52,804	NA	1274	3250	NA
	ACS800-17-0260-5+C129	438	302	250	226	150	R8i	\$ 64,145	NA	1796	3875	NA
	ACS800-17-0320-5+C129	530	361	300	273	200	R8i	\$ 76,237	NA	1796	3875	NA
	ACS800-17-0400-5+C129	660	437	350	340	250	R8i	\$ 88,350	NA	1796	3875	NA
	ACS800-17-0460-5+C129	762	504	400	393	300	R8i	\$ 99,144	NA	2776	4925	NA
	ACS800-17-0510-5+C129	863	571	450	445	350	R8i	\$ 111,139	NA	2776	4925	NA
	ACS800-17-0580-5+C129	972	643	500	501	400	R8i	\$ 122,129	NA	2776	4925	NA
	ACS800-17-0780-5*	1294	856	700	667	550	2xR8i	\$ 164,663	NA	4316	7475	NA
	ACS800-17-0870-5*	1458	965	800	752	650	$2 x R 8 i$	\$ 182,723	NA	4316	7475	NA
	ACS800-17-1140-5*	1906	1261	1050	982	850	2xR8i	\$ 223,123	NA	4316	7475	NA
	ACS800-17-1330-5*	2217	1467	1250	1143	1000	$3 \times R 8 i$	\$ 272,903	NA	5135	11371	NA
	ACS800-17-1640-5*	2734	1809	1550	1409	1250	$3 x R 8 i$	\$ 338,527	NA	5135	11371	NA
	ACS800-17-2160-5*	3608	2387	2050	1860	1600	4xR8i	\$ 449,274	NA	7334	17634	NA

[^1]General and specifically identified notes are at the beginning of the product selection (ratings) tables

ACS800 AC Drives

Regenerative Drives, 240Vac

3 -phase supply voltage $208,220,230,240$. The power ratings are valid at nominal voltage 240 Vac 60 Hz

				$\begin{aligned} & \stackrel{0}{0} \frac{y}{\partial} \\ & \frac{1}{0} \\ & \hline \end{aligned}$								$\begin{aligned} & \overline{0} \\ & \stackrel{0}{0} \\ & \tilde{\pi} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
+0C111	+D150	+E200	+E202	+E205 ${ }^{(7)}$	+E208	+E210	$\begin{aligned} & \text { +H350 } \\ & \text { +H352 } \end{aligned}$	+H350	+H352	+H357	+H359	+P901	+Q950	$\begin{aligned} & +F 250 \\ & +Q 951 \end{aligned}$
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA

Regenerative Drives, 480Vac

3 -phase supply voltage $380,400,415,460,480,500$. The power ratings are valid at nominal voltage 480 Vac 60 Hz

									$\begin{aligned} & \stackrel{\overleftarrow{x}}{\underset{\sim}{x}} \\ & \underline{y} \end{aligned}$			$\begin{array}{ll} 0 & 0 \\ 0 \\ \tilde{\pi} \\ 0 \\ 0 \\ 0 & 0 \end{array}$		
+0C111	+D150	+E200	+E202	+E205 ${ }^{(7)}$	+E208	+E210	$\begin{aligned} & \text { +H350 } \\ & \text { +H352 } \end{aligned}$	+H350	+H352	+H357	+H359	+P901	+Q950	$\begin{array}{r} +F 250 \\ + \text { Q951 } \\ \hline \end{array}$
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	2123	NA	NA	1200	600	600	600	NA	STD	878	1393
NA	NA	702	874	2123	NA	NA	1200	600	600	600	NA	STD	878	1393
NA	NA	702	874	2676	NA	NA	1200	600	600	600	NA	STD	878	1393
														$\begin{aligned} & \text { E-Stop } \\ & \text { +Q951 } \\ & \hline \end{aligned}$
NA	NA	NA	3245	2676	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	3245	2676	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	3245	2676	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	3245	2676	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	3245	4254	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	3835	4254	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	3835	4950	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	3835	4950	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	7678	STD	STD	STD	1900	950	950	1800	INCL	STD	1696	200
NA	NA	NA	7678	STD	STD	STD	1900	950	950	1800	INCL	STD	1696	200
NA	NA	NA	NA	STD	STD	STD	1900	950	950	1800	INCL	STD	1696	200
NA	NA	NA	NA	STD	STD	STD	1900	950	950	2700	INCL	STD	2548	200
NA	NA	NA	NA	STD	STD	STD	1900	950	950	2700	INCL	STD	2548	200
NA	NA	NA	NA	STD	STD	STD	2400	1200	1200	3200	INCL	STD	3396	200

Regenerative Drives, 600Vac

3 -phase supply voltage $525,550,575,600,690$. The power ratings are valid at nominal voltage 575 Vac 60 Hz

	Type Code NEMA 1	$\begin{gathered} I_{\text {max }} \\ \text { Amps } \end{gathered}$	Nominal Ratings				Frame Size	NEMA 1 List Price					
			$\begin{aligned} & \text { Normal Duty (CT) } \\ & \left(110 \% \mathrm{I}_{2 \mathrm{~N}}\right) \end{aligned}$		$\begin{gathered} \text { HeavyDuty (CT) } \\ \left(150 \% I_{2 H D}\right) \end{gathered}$								
			$I_{2 N}$ Amps	$\begin{aligned} & \mathrm{P}_{\mathrm{N}} \\ & \mathrm{Hp} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{I}_{2 \mathrm{HD}} \\ \text { Amps } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{\mathrm{HD}} \\ & \mathrm{Hp} \\ & \hline \end{aligned}$							
	ACS800-U11-0060-7	86	54	50	43	40	R6	\$	23,077	NA	NA	NA	NA
	ACS800-U11-0070-7	120	75	60	60	50	R6	\$	27,235	NA	NA	NA	NA
	ACS800-U11-0100-7	142	88	75	71	60	R6	\$	30,557	NA	NA	NA	NA
	ACS800-17-0060-7+C129	86	54	50	43	40	R6	\$	30,417	NA	1274	3250	NA
	ACS800-17-0070-7+C129	120	75	60	60	50	R6		34,874	NA	1274	3250	NA
	ACS800-17-0100-7+C129	142	88	75	71	60	R6		38,439	NA	1274	3250	NA
	ACS800-17-0160-7+C129	192	127	125	99	100	R7i		47,464	NA	1274	3250	NA
	ACS800-17-0200-7+C129	218	144	150	112	125	R7i		55,345	NA	1274	3250	NA
	ACS800-17-0260-7+C129	301	193	200	150	150	R8i		67,976	NA	1796	3875	NA
	ACS800-17-0320-7+C129	417	268	250	209	200	R8i		79,076	NA	1796	3875	NA
	ACS800-17-0400-7+C129	502	322	300	251	250	R8i	\$	90,807	NA	1796	3875	NA
	ACS800-17-0440-7+C129	571	367	350	286	300	R8i		102,069	NA	2776	4925	NA
	ACS800-17-0540-7+C129	668	429	450	334	350	R8i		128,469	NA	2776	4925	NA
	ACS800-17-0790-7*	985	632	650	493	500	2xR8i		176,342	NA	4316	7475	NA
	ACS800-17-0870-7*	1091	700	750	545	600	2xR8i		196,238	NA	4316	7475	NA
	ACS800-17-1050-7*	1310	840	900	655	700	2xR8i		234,931	NA	4316	7475	NA
	ACS800-17-1330-7*	1663	1067	1150	831	900	3xR8i		296,027	NA	5135	11371	NA
	ACS800-17-1510-7*	1879	1206	1300	940	1050	3xR8i		331,468	NA	5135	11371	NA
	ACS800-17-1980-7*	2480	1591	1750	1240	1350	$4 \times \mathrm{R} 8 \mathrm{i}$		452,237	NA	7334	17634	NA
	ACS800-17-2780-7*	3472	2228	2450	1736	1900	5xR8i		625,302	NA	9512	22195	NA
	ACS800-17-2940-7*	3680	2362	2600	1840	2000	6xR8i		669,107	NA	10036	23419	NA

* ACS800-17 require plus codes $+\mathrm{C} 129+\mathrm{H} 359$ for included options in Hardware Selection \& Description

General and specifically identified notes are at the beginning of the product selection (ratings) tables

ACS800 AC Drives

Regenerative Drives, 600Vac

3-phase supply voltage $525,550,575,600,690$. The power ratings are valid at nominal voltage 575 Vac 60 Hz

												$\begin{aligned} & \overline{0} \\ & \stackrel{y}{0} \\ & \stackrel{0}{0} \\ & 0.0 \\ & 0 \end{aligned}$		
+0C111	+D150	+E200	+E202	+E205 ${ }^{(7)}$	+E208	+E210	$\begin{aligned} & +\mathrm{H} 350 \\ & +\mathrm{H} 352 \end{aligned}$	+H350	+H352	+H357	+H359	+P901	+Q950	$\begin{aligned} & +\mathrm{F} 250 \\ & +\mathrm{Q} 951 \end{aligned}$
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	NA	NA	2275	STD	STD	1200	600	600	600	NA	STD	878	1393
NA	NA	NA	NA	2275	STD	STD	1200	600	600	600	NA	STD	878	1393
NA	NA	NA	NA	2275	STD	STD	1200	600	600	600	NA	STD	878	1393
														$\begin{aligned} & \hline \text { E-Stop } \\ & \text { +Q951 } \end{aligned}$
NA	NA	NA	NA	2676	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	NA	2676	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	NA	STD	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	NA	STD	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	NA	STD	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	NA	STD	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	NA	STD	STD	STD	1200	600	600	600	NA	STD	878	200
NA	NA	NA	NA	STD	STD	STD	1900	950	950	1800	INCL	STD	1696	200
NA	NA	NA	NA	STD	STD	STD	1900	950	950	1800	INCL	STD	1696	200
NA	NA	NA	NA	STD	STD	STD	1900	950	950	1800	INCL	STD	1696	200
NA	NA	NA	NA	STD	STD	STD	1900	950	950	2700	INCL	STD	2548	200
NA	NA	NA	NA	STD	STD	STD	1900	950	950	2700	INCL	STD	2548	200
NA	NA	NA	NA	STD	STD	STD	2400	1200	1200	3200	INCL	STD	3396	200
NA	NA	NA	NA	STD	STD	STD	2400	1200	1200	4500	INCL	STD	3396	200
NA	NA	NA	NA	STD	STD	STD	2400	1200	1200	4500	INCL	STD	5093	200

ACS800 AC Drives

Ultra Low Harmonic Drives, 240Vac

3 -phase supply voltage $208,220,230,240$. The power ratings are valid at nominal voltage 240 Vac 60 Hz

	Type Code NEMA 1	$\begin{gathered} \mathrm{I}_{\max } \\ \text { Amps } \end{gathered}$	Nominal Ratings				Frame Size	NEMA 1 List Price					
			$\begin{aligned} & \text { Normal Duty (CT) } \\ & \left(110 \% \mathrm{I}_{2 \mathrm{~N}}\right) \end{aligned}$		HeavyDuty (CT) ($150 \% \mathrm{I}_{\text {2HD }}$)								
			$\begin{array}{r} \mathrm{I}_{2 \mathrm{~N}} \\ \mathrm{Amps} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{P}_{\mathrm{N}} \\ & \mathrm{Hp} \end{aligned}$	$\begin{gathered} \hline \mathrm{I}_{2 \mathrm{HD}} \\ \mathrm{Amps} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{P}_{\mathrm{HD}} \\ & \mathrm{Hp} \end{aligned}$				+A004	+B054	+B055	+B056
	ACS800-U31-0011-2	52	32	10	26	7.5	R5	\$	7,195	NA	NA	NA	NA
	ACS800-U31-0016-2	68	45	15	38	10	R5	\$	8,275	NA	NA	NA	NA
	ACS800-U31-0020-2	90	56	20	45	10	R5	\$	10,055	NA	NA	NA	NA
	ACS800-U31-0025-2	118	69	25	59	15	R5	\$	12,179	NA	NA	NA	NA
	ACS800-U31-0030-2	144	83	30	72	20	R5	\$	14,255	NA	NA	NA	NA
	ACS800-U31-0040-2	168	114	40	84	25	R6	\$	17,376	NA	NA	NA	NA
	ACS800-U31-0050-2	234	143	50	117	30	R6	\$	20,674	NA	NA	NA	NA
	ACS800-U31-0060-2	234	157	60	132	40	R6	\$	23,862	NA	NA	NA	NA

Ultra Low Harmonic Drives, 480Vac

3 -phase supply voltage $380,400,415,460,480,500$. The power ratings are valid at nominal voltage 480 Vac 60 Hz

	Type Code NEMA 1	$\begin{gathered} I_{\max } \\ \text { Amps } \end{gathered}$	Nominal Ratings				Frame Size	NEMA 1 List Price		$\overrightarrow{-1} \underset{\sigma}{\sigma}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\sim}$
			Norma (110	$\begin{aligned} & \text { ty (CT) } \\ & \left.\mathrm{I}_{2 N}\right) \end{aligned}$	Heavy (150	$\begin{aligned} & y(C T) \\ & \left.2_{2 H D}\right) \end{aligned}$			$\begin{aligned} & \overline{\mathrm{a}} \\ & \underset{\sim}{\mathrm{O}} \\ & \end{aligned}$		$\underset{\sim}{\underset{\sim}{2}} \stackrel{\stackrel{\circ}{n}}{\varrho}$	$\underset{\sim}{\underset{\sim}{2}} \stackrel{0}{\circ}$
			$\begin{gathered} \mathrm{I}_{2 \mathrm{~N}} \\ \text { Amps } \end{gathered}$	$\begin{aligned} & \hline \mathrm{P}_{\mathrm{N}} \\ & \mathrm{Hp} \end{aligned}$	$\begin{gathered} \mathrm{I}_{2 \mathrm{HD}} \\ \text { Amps } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{\mathrm{HD}} \\ & \mathrm{Hp} \end{aligned}$			+A004	+B054	+B055	+B056
	ACS800-U31-0020-5	52	29	20	25	15	R5	\$ 7,251	NA	NA	NA	NA
	ACS800-U31-0025-5	61	34	25	30	20	R5	\$ 8,456	NA	NA	NA	NA
	ACS800-U31-0030-5	68	45	30	37	25	R5	\$ 9,613	NA	NA	NA	NA
	ACS800-U31-0040-5	90	55	40	47	30	R5	\$ 11,521	NA	NA	NA	NA
	ACS800-U31-0050-5	118	67	50	57	40	R5	\$ 13,725	NA	NA	NA	NA
	ACS800-U31-0060-5	144	78	60	62	50	R5	\$ 15,849	NA	NA	NA	NA
	ACS800-U31-0070-5	168	114	75	88	60	R6	\$ 18,774	NA	NA	NA	NA
	ACS800-U31-0100-5	234	132	100	114	75	R6	\$ 22,298	NA	NA	NA	NA
	ACS800-U31-0120-5	264	156	125	125	100	R6	\$ 26,774	NA	NA	NA	NA
	ACS800-37-0070-5+C129	168	114	75	88	60	R6	\$ 23,494	NA	1274	3250	NA
	ACS800-37-0100-5+C129	234	132	100	114	75	R6	\$ 27,609	NA	1274	3250	NA
	ACS800-37-0120-5+C129	264	156	125	125	100	R6	\$ 32,055	NA	1274	3250	NA
	ACS800-37-0170-5+C129	291	192	150	156	125	R7i	\$ 36,812	NA	1274	3250	NA
	ACS800-37-0210-5+C129	355	240	200	183	150	R7i	\$ 44,983	NA	1274	3250	NA
	ACS800-37-0260-5+C129	438	302	250	226	150	R8i	\$ 53,034	NA	1796	3875	NA
	ACS800-37-0320-5+C129	530	361	300	273	200	R8i	\$ 60,313	NA	1796	3875	NA
	ACS800-37-0400-5+C129	660	437	350	340	250	R8i	\$ 69,306	NA	1796	3875	NA
	ACS800-37-0460-5+C129	762	504	400	393	300	R8i	\$ 79,023	NA	2776	4925	NA
	ACS800-37-0510-5+C129	863	571	450	445	350	R8i	\$ 87,092	NA	2776	4925	NA
	ACS800-37-0610-5+C129	1016	672	550	524	400	R8i	\$ 100,138	NA	2776	4925	NA
	ACS800-37-0780-5*	1294	856	700	667	550	$2 x R 8 i$	\$ 132,066	NA	4316	7475	NA
	ACS800-37-0870-5*	1458	965	800	752	650	$2 \times R 8 i$	\$ 151,450	NA	4316	7475	NA
	ACS800-37-1160-5*	1941	1284	1050	1001	850	2xR8i	\$ 193,869	NA	4316	7475	NA
	ACS800-37-1330-5*	2217	1476	1250	1143	1000	$3 \times R 8 i$	\$ 236,604	NA	5135	11371	NA
	ACS800-37-1820-5*	2956	1956	1650	1524	1300	$3 x R 8 i$	\$ 299,773	NA	5135	11371	NA
	ACS800-37-2200-5*	3670	2428	2050	1892	1600	$4 \times R 8 i$	\$ 387,962	NA	7334	17634	NA

[^2]General and specifically identified notes are at the beginning of the product selection (ratings) tables

ACS800 AC Drives

Ultra Low Harmonic Drives, 240Vac

3 -phase supply voltage $208,220,230,240$. The power ratings are valid at nominal voltage 240 Vac 60 Hz

+0C111	+D150	+E200	+E202	+E205 ${ }^{(7)}$	+E208	+E210	$\begin{array}{r} \hline+\mathrm{H} 350 \\ +\mathrm{H} 352 \\ \hline \end{array}$	+H350	+H352	+H357	+H359	+P901	+Q950	$\begin{aligned} & +\mathrm{F} 250 \\ & +\mathrm{Q} 951 \\ & \hline \end{aligned}$
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA

Ultra Low Harmonic Drives, 480Vac

3-phase supply voltage $380,400,415,460,480,500$. The power ratings are valid at nominal voltage 480 Vac 60 Hz

								$\begin{aligned} & \text { त } \\ & \stackrel{\rightharpoonup}{U} \\ & E \\ & \underset{\sim}{E} \end{aligned}$	$\begin{aligned} & \underline{\bar{x}} \\ & \underset{\sim}{E} \end{aligned}$			$\begin{aligned} & \text { 읓 } \\ & \text { o } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
+0C111	+D150	+E200	+E202	+E205 ${ }^{(7)}$	+E208	+E210	$\begin{aligned} & \text { +H350 } \\ & \text { +H352 } \end{aligned}$	+H350	+H352	+H357	+H359	+P901	+Q950	$\begin{array}{r} +F 250 \\ + \text { Q951 } \\ \hline \end{array}$
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	2123	NA	NA	1200	600	600	600	NA	STD	878	1393
NA	NA	702	874	2123	NA	NA	1200	600	600	600	NA	STD	878	1393
NA	NA	702	874	2676	NA	NA	1200	600	600	600	NA	STD	878	1393
														$\begin{aligned} & \text { E-Stop } \\ & + \text { Q951 } \\ & \hline \end{aligned}$
NA	6349	NA	3245	2676	STD	STD	1200	600	600	600	NA	STD	878	200
NA	6349	NA	3245	2676	STD	STD	1200	600	600	600	NA	STD	878	200
NA	6349	NA	3245	2676	STD	STD	1200	600	600	600	NA	STD	878	200
NA	6349	NA	3245	2676	STD	STD	1200	600	600	600	NA	STD	878	200
NA	6349	NA	3245	4254	STD	STD	1200	600	600	600	NA	STD	878	200
NA	6983	NA	3835	4254	STD	STD	1200	600	600	600	NA	STD	878	200
NA	6983	NA	3835	4950	STD	STD	1200	600	600	600	NA	STD	878	200
NA	6983	NA	3835	4950	STD	STD	1200	600	600	600	NA	STD	878	200
NA	13968	NA	7678	STD	STD	STD	1900	950	950	1800	INCL	STD	1696	200
NA	13968	NA	7678	STD	STD	STD	1900	950	950	1800	INCL	STD	1696	200
NA	20951	NA	NA	STD	STD	STD	1900	950	950	1800	INCL	STD	1696	200
NA	NA	NA	NA	STD	STD	STD	1900	950	950	2700	INCL	STD	2548	200
NA	NA	NA	NA	STD	STD	STD	1900	950	950	2700	INCL	STD	2548	200
NA	NA	NA	NA	STD	STD	STD	2400	1200	1200	3200	INCL	STD	3396	200

Ultra Low Harmonic Drives, 600Vac

3 -phase supply voltage $525,550,575,600,690$. The power ratings are valid at nominal voltage 575 Vac 60 Hz

	Type CodeNEMA 1	$\begin{gathered} I_{\max } \\ \text { Amps } \end{gathered}$	Nominal Ratings				$\begin{aligned} & \text { Frame } \\ & \text { Size } \end{aligned}$	NEMA 1 List Price					
			$\begin{gathered} \text { Normal Duty (CT) } \\ \left(110 \% \mathrm{I}_{2 \mathrm{~N}}\right) \end{gathered}$		$\begin{gathered} \text { HeavyDuty (CT) } \\ \left(150 \% \mathrm{I}_{2 \mathrm{HD}}\right) \end{gathered}$								
			$\begin{gathered} \mathrm{I}_{2 \mathrm{~N}} \\ \text { Amps } \end{gathered}$	$\begin{aligned} & \mathrm{P}_{\mathrm{N}} \\ & \mathrm{Hp} \end{aligned}$	$I_{2 H D}$ Amps	$\begin{aligned} & \mathrm{P}_{\mathrm{HD}} \\ & \mathrm{Hp} \end{aligned}$							
	ACS800-U31-0060-7	86	54	50	43	40	R6	\$	20,989	NA	NA	NA	NA
	ACS800-U31-0070-7	120	75	60	60	50	R6	\$	24,711	NA	NA	NA	NA
	ACS800-U31-0100-7	142	88	75	71	60	R6	\$	28,029	NA	NA	NA	NA
	ACS800-37-0060-7+C129	86	54	50	43	40	R6	\$	26,141	NA	1274	3250	NA
	ACS800-37-0070-7+C129	120	75	60	60	50	R6	\$	30,024	NA	1274	3250	NA
	ACS800-37-0100-7+C129	142	88	75	71	60	R6	\$	32,722	NA	1274	3250	NA
	ACS800-37-0170-7+C129	202	133	125	104	100	R7i		40,636	NA	1274	3250	NA
	ACS800-37-0210-7+C129	235	156	150	121	100	R7i	\$	46,892	NA	1274	3250	NA
	ACS800-37-0260-7+C129	301	193	200	150	150	R8i	\$	56,774	NA	1796	3875	NA
	ACS800-37-0320-7+C129	417	268	250	209	200	R8i		65,665	NA	1796	3875	NA
	ACS800-37-0400-7+C129	502	322	300	251	250	R8i	\$	78,086	NA	1796	3875	NA
	ACS800-37-0440-7+C129	571	367	350	286	300	R8i		86,875	NA	2776	4925	NA
	ACS800-37-0540-7+C129	668	429	450	334	350	R8i		102,848	NA	2776	4925	NA
	ACS800-37-0790-7*	985	632	650	493	500	2xR8i		140,716	NA	4316	7475	NA
	ACS800-37-0870-7*	1091	700	750	545	600	2xR8i		160,397	NA	4316	7475	NA
	ACS800-37-1160-7*	1425	914	1000	713	700	2xR8i		211,297	NA	4316	7475	NA
	ACS800-37-1330-7*	1663	1067	1150	831	900	3xR8i		240,056	NA	5135	11371	NA
	ACS800-37-1510-7*	1879	1206	1300	940	1050	3xR8i	\$	269,074	NA	5135	11371	NA
	ACS800-37-2320-7*	2791	1791	2000	1396	1500	4xR8i		397,256	NA	7334	17634	NA
	ACS800-37-2780-7*	3472	2228	2450	1736	1900	5xR8i		487,913	NA	9512	22195	NA
	ACS800-37-3310-7*	3987	2559	2800	1999	2200	6xR8i		558,195	NA	10036	23419	NA

* ACS800-37 require plus codes +C129+H359 for included options in Hardware Selection \& Description

General and specifically identified notes are at the beginning of the product selection (ratings) tables

ACS800 AC Drives

Ultra Low Harmonic Drives, 600Vac

3-phase supply voltage $525,550,575,600,690$. The power ratings are valid at nominal voltage 575 Vac 60 Hz

				$\frac{\stackrel{\rightharpoonup}{0}}{\stackrel{0}{\circ}}$										
+0C111	+D150	+E200	+E202	+E205 ${ }^{(7)}$	+E208	+E210	$\begin{array}{r} +\mathrm{H} 350 \\ +\mathrm{H} 352 \\ \hline \end{array}$	+H350	+H352	+H357	+H359	+P901	+Q950	$\begin{array}{r} +\mathrm{F} 250 \\ +\mathrm{Q} 951 \\ \hline \end{array}$
NA	NA	373	593	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	NA	702	874	NA	NA	NA	NA	NA	NA	300	NA	STD	544	NA
NA	6349	NA	NA	2275	STD	STD	1200	600	600	600	NA	STD	878	1393
NA	6349	NA	NA	2275	STD	STD	1200	600	600	600	NA	STD	878	1393
NA	6349	NA	NA	2275	STD	STD	1200	600	600	600	NA	STD	878	1393
														$\begin{aligned} & \hline \text { E-Stop } \\ & \text { +Q951 } \\ & \hline \end{aligned}$
NA	6349	NA	NA	2676	STD	STD	1200	600	600	600	NA	STD	878	200
NA	6349	NA	NA	2676	STD	STD	1200	600	600	600	NA	STD	878	200
NA	8943	NA	NA	STD	STD	STD	1200	600	600	600	NA	STD	878	200
NA	8943	NA	NA	STD	STD	STD	1200	600	600	600	NA	STD	878	200
NA	8943	NA	NA	STD	STD	STD	1200	600	600	600	NA	STD	878	200
NA	8943	NA	NA	STD	STD	STD	1200	600	600	600	NA	STD	878	200
NA	8943	NA	NA	STD	STD	STD	1200	600	600	600	NA	STD	878	200
NA	15532	NA	NA	STD	STD	STD	1900	950	950	1800	INCL	STD	1696	200
NA	15532	NA	NA	STD	STD	STD	1900	950	950	1800	INCL	STD	1696	200
NA	23287	NA	NA	STD	STD	STD	1900	950	950	1800	INCL	STD	1696	200
NA	NA	NA	NA	STD	STD	STD	1900	950	950	2700	INCL	STD	2548	200
NA	NA	NA	NA	STD	STD	STD	1900	950	950	2700	INCL	STD	2548	200
NA	NA	NA	NA	STD	STD	STD	2400	1200	1200	3200	INCL	STD	3396	200
NA	NA	NA	NA	STD	STD	STD	2400	1200	1200	4500	INCL	STD	3396	200
NA	NA	NA	NA	STD	STD	STD	2400	1200	1200	4500	INCL	STD	5093	200

Floor Standing and Cabinet drive specific options (-U2, -PC, -U7, -07, -17, -37)

Name	Description	Field Kit Code	Plus Code	List Price
Delete Extension Enclosure (ACS800-U2 only)	Removes extension enclosure from type U2 product. The C111 option is required for Top Entry/Exit, if deleted unit will be Bottom Entry/Exit (do not add $+\mathrm{H} 350+\mathrm{H} 352$) NOTE: list price for option is negative (subtract from base drive)	NA	+0C111	XxX *
I/O Extension Adapter * Requires DDCS Communication (PC/U7/07/17/37 only)	The I/O extension adapter adds support for 3 additional (R) type adapters for the ACS800. This module is mounted by the user external to ACS800U1/U2/U4 type drives. It can be selected as a factory installed option for internal mounting inside PC/U7/07/17/37 product.	AIMA-01-KIT	L515	\$730
Additional I/O TB	Option to add additional I/O terminal blocks	NA	+L504	\$350
Thermistor Relay (1)	Adds one (1) Thermistor Relay	NA	+L505	\$465
Thermistor Relay (2)	Adds two (2) Thermistor Relays	NA	+2L505	\$930
PT100 Relay (3)	Includes (3) separate PT-100 relays that provide individual temperature monitoring for (3) platinum 100 Ohm RTDs (one temperature setting from 50 to 150 C) with one output supplying a contact closure indicating motor over temperature. Provided for user application requirements.	NA	+3L506	\$2,785
$\begin{array}{\|l} \hline \text { PT100 Relay (5) } \\ \text { (U7/07/17 only) } \\ \hline \end{array}$	This option includes five (5) separate PT-100 relays (same as above).	NA	+5L506	\$4,642
$\begin{array}{\|l} \hline \text { PT100 Relay (8) } \\ \text { (U7/07 only) } \\ \hline \end{array}$	This option includes eight (8) separate PT-100 relays (same as above).	NA	+8L506	\$7,427
European Cable entry (U7/07/17 only) (U7/07/17 only)	European cable lead through entry (remove US conduit plate) delete +H 358 on $-07 @ 400 \mathrm{Vac} \&-17$	NA	+H357	xxx *
Output Motor heater (PC/U7/07 only)	Output connection for motor heater (external supply required)	NA	+G313	\$800
Starter for Aux Fan (PC/U7/07/17/37 only)	Starter for auxiliary motor cooling fan, 1.0 to 1.6 A	NA	+M600	\$659
Starter for Aux Fan (PC/U7/07/17/37 only)	Starter for auxiliary motor cooling fan, 1.6 to 2.5 A	NA	+M601	\$702
Starter for Aux Fan (PC/U7/07/17/37 only)	Starter for auxiliary motor cooling fan, 2.5 to 4.0 A	NA	+M602	\$766
Starter for Aux Fan (PC/U7/07/17/37 only)	Starter for auxiliary motor cooling fan, 4.0 to 6.3 A	NA	+M603	\$836
Starter for Aux Fan (PC/U7/07/17/37 only)	Starter for auxiliary motor cooling fan, 6.3 to 10 A	NA	+M604	\$926
Starter for Aux Fan (PC/U7/07/17/37 only)	Starter for auxiliary motor cooling fan, 10 to 16 A	NA	+M605	\$1,191
Starter for Aux Fan (PC/U7/07/17/37 only)	Starter for auxiliary motor cooling fan, 16 to 25 A	NA	+M606	\$1,454
T-Handle Wrench for ACS800-U2	This option provides the means of connecting/tightening bolts for the R7 and R8 ACS800-U2 cabling pedestal. Includes $13 / 19 \mathrm{~mm}$ socket with T-Handle and 500 mm extension bar. The purchase of this tool is highly recommended with the purchase of any ACS800-U2-0170-5 through ACS800-U2-0610-5 drives.	ACS800-TOOL	NA	\$130

[^3]Input / Output Options

Name	Description	Field Kit Code	Plus Code	List Price
Analog I/O Extension Module	The Analog I/O Extension module offers two unipolar current (0[4]... 20 mA) or bipolar voltage ($\pm 0[2] \ldots 10 \mathrm{~V}$ or $\pm 0 \ldots 2 \mathrm{~V}$) inputs and two unipolar current ($0[4]-$ 20 mA) outputs. Analog unipolar inputs are 12 bit. Bipolar inputs are 11 bit. Analog outputs are 12 bit. The analog inputs \& outputs are galvanically isolated as a group, from each other \& the power supply. This option uses 120 mA of the available 250 mA power supply.	RAIO-01-KIT	+L500	\$465
Digital I/O Extension Module	The Digital I/O Extension module offers three digital inputs ($24 \ldots 250 \mathrm{Vdc}$ or $110 \ldots 230 \mathrm{Vac}$) and two relay outputs ($1250 \mathrm{VA} / 250 \mathrm{Vac}$ or $5 \mathrm{~A} / 24 \mathrm{Vdc}$). The isolation voltage between the digital inputs, digital outputs and power supply is 2.5 kV (1.5 kV between DI2 and DI3). This option uses 30 mA of the available 250 mA power supply.	RDIO-01-KIT	+L501	\$465
Pulse Encoder Interface	The Pulse Encoder Interface module offers a differential or single ended interface for a digital pulse encoder. The module is capable of operating from either a 15 or 24 Vdc signal with a max frequency of 200 kHz . This option uses 55 mA of the available 250 mA power supply. When the drive's internal power supply is used to power the encoder, additional options may not be installed. Check the encoder's power supply requirements prior to installation.	RTAC-01-KIT	+L502	\$465
Pulse Encoder Interface	TTL incremental Pulse Encoder Interface module for use with Positioning App SW only. The module is capable of operating at 24 Vdc signal with a max frequency of 200 kHz . This option uses 55 mA of the available 250 mA power supply.	RTAC-03-KIT	+L517	\$465
Resolver Interface * Limited Application SW Support, Check with factory	The Resolver Interface module offers interface for an analog resolver connection. A resolver may be used to obtain accurate speed and position (angle) feedback from a motor shaft. Application software supporting the Resolver interface; Positioning Control Permanent Magnet Synchronous Machine	RRIA-01-KIT	+L516	\$465
$\begin{aligned} & \text { 115/230Vac } \\ & \text { Digital Input } \\ & \text { Interface } \end{aligned}$	The 115/230V Digital Input Interface module offers six (6) 115 V or three (3) 230 V rated circuits mounted on a common board used to drive DI1 through DI6 of the ACS800. The 115/230V and interconnection wiring must be provided by the user.	OHDI-01-KIT	NA	\$300
I/O Extension Adapter * Requires DDCS Communication	The I/O extension adapter adds support for 3 additional (R) type adapters for the ACS800. This module is mounted by the user external to ACS800U1/U2/U4 type drives. It can be selected as a factory installed option for internal mounting inside ACS800-U7/07 product.	AIMA-01-KIT	NA	\$730
DDCS Communications Coated Board Coated Board	The RDCO-03 module includes the connectors for fiber optic DDCS channels $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2$ and CH 3 . The usage of these channels is determined by the application but are normally assigned to the following: CHO - overriding system (e.g. fieldbus adapter) - 5 MBd CH1 - I/O extensions - 5MBd CH2 - Master/Follower link - 5 MBd CH3 - PC tools (such as DriveWare) - 5 MBd	RDCO-03C-KIT Std in -U11 \& -U31 do not add +code	+L503	\$140
DDCS Communications Coated Board	The RDCO-02 module includes the connectors for fiber optic DDCS channels $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2$ and CH 3 . The usage of these channels is determined by the application but are normally assigned to the following: CHO - overriding system (e.g. fieldbus adapter) - 5 MBd CH1 - I/O extensions - 5MBd CH2 - Master/Follower link - 10 MBd CH3 - PC tools (such as DriveWare) - 10 MBd	RDCO-02C-KIT Std in -U11 \& -U31 do not add +code	+L509	\$270
DDCS Communications Coated Board	The RDCO-01 module includes the connectors for fiber optic DDCS channels $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2$ and CH 3 . The usage of these channels is determined by the application but are normally assigned to the following: CHO - overriding system (e.g. fieldbus adapter) - 10 MBd CH1 - I/O extensions - 5MBd CH2 - Master/Follower link - 10 MBd CH3 - PC tools (such as DriveWare) - 10 MBd	RDCO-01C-KIT Std in -U11 \& -U31 do not add +code	+L508	\$270

NOTE: A maximum of 2 I/O or FieldBus options are allowed. If additional options are required, the AIMA-01 extension adapter is required.

FieldBus Communication Options

Name	Description	Field Kit Code	Plus Code	List Price
DeviceNet Adapter	The DeviceNet network uses a linear bus topology. Terminating resistors are required on each end of the trunk line. Drop lines as long as 6 meters (20 feet) each are permitted, allowing one or more nodes to be attached. DeviceNet allows branching structures only on drop lines.	RDNA-01-KIT	+K451	\$465
ProfiBus-DP Adapter	ProfiBus is an open serial communication standard that enables data exchange between automation components. The transmission medium of the bus is a twisted pair cable (according to RS-485 standard). The maximum length of the bus cable is 100 to 1200 meters, depending on the transmission rate. Up to 31 stations can be connected to the same PROFIBUS system without use of repeaters.	RPBA-01-KIT	+K454	\$465
$\begin{array}{\|l} \hline \text { ModBus } \\ \text { Adapter } \end{array}$	ModBus is a serial, asynchronous protocol. The ModBus protocol does not specify the physical interface. Typical physical interfaces are RS-232 and RS485. The RMBA-01 provides a galvanically isolated RS-485 interface. ModBus is designed for integration with Modicon PLCs or other automation devices, and the services closely correspond to the PLC architecture. The RMBA-01 supports the RTU protocol only.	RMBA-01-KIT	+K458	\$465
ControlNet Adapter	The ControlNet network uses a RG-6 quad shielded cable or fiber with support for media redundancy. The RCNA-01 Adapter module supports only RG-6 quad shielded cable (coax) for the bus connection. ControlNet is flexible in topology options (bus, tree, star) to meet various application needs. The fieldbus speed is 5 Mbits/s. The RCNA-01 ControlNet Adapter module can not originate connections on its own, but a scanner node can open a connection towards it. The ControlNet protocol is implemented according to the ControlNet international specification for a Communication adapter.	RCNA-01-KIT	+K462	\$595
EtherNet Adapter	The RETA-01 module supports the Modbus/TCP and EtherNet/IP network protocols. Modbus/TCP is a variant of the Modbus family of simple, vendor neutral communication protocols intended for supervision and control of automation equipment. EtherNet/IP is based on the Common Industrial Protocol (CIP), which is also the framework for both the ControlNet and DeviceNet networks. The RETA-01 supports 10/100 Mbps transfer rate with network connection made with standard RJ-45 connector.	RETA-01-KIT	+K466	\$465
$\begin{array}{\|l} \hline \text { ProfiNet } \\ \text { IO Adapter } \end{array}$	The RETA-02 module supports both Modbus/TCP and PROFINET IO network protocols. Modbus/TCP is a variant of the Modbus family of simple, vendor neutral communication protocols intended for supervision and control of automation equipment. PROFINET IO is a open standard for industrial ethernet, intended for configuration, supervision and control of automation equipment. The RETA-02 supports 10/100 Mbps transfer rate with network connections made with CAT 5 wiring and RJ-45 connectors. Both star and bus topology options are supported.	RETA-02-KIT	+K467	\$465
CANopen Adapter	The RCAN-01 CANopen Adapter Module enables the connection of the ABB drive to a CANopen system. CANopen is a higher level protocol based on the CAN (Control Area Network) serial bus system and the CAL (CAN Application Layer). The RCAN-01 fulfills CiA (CAN in Automation) standard DSP-402 (Drives and Motion Control), supporting the "Manufacturer Specific" operating mode only. The physical medium of CANopen is a differentially driven twowire bus line with common return according to ISO 11989. The RCAN-01 supports baud rates from $10 \mathrm{kbit} / \mathrm{s}$ to $1 \mathrm{Mbit} / \mathrm{s}$. The module provides DIPswitches for selection of the node number and baud rate. The node number and baud rate can alternatively be set via the control panel of the drive.	RCAN-01-KIT	NA	\$595
EtherNet Enhanced Adapter * Requires DDCS Communication	The NETA-01 Ethernet Adapter module is an optional device for browserbased remote monitoring of ABB drives via Ethernet. Multiple drives (up to 9) can be connected to the network through the DDCS Branching Unit (NDBU85/95) or using ring topology with the NETA-01 Ethernet Adapter module.	NETA-01-KIT	NA	\$1,550

NOTE: Nxxx type option modules cannot be factory installed, must be ordered separately and field installed.

Special Application Software

Name	Description	Field Kit Code	Plus Code	List Price
Pump Control	The intelligent pump control software incorporates all functions commonly required for multi-pump coordination and eliminates the need for an external PLC.	NA	+N687	\$326
Crane Control * Requires app review \& Crane Drive certification	The software is designed to provide safety and control for the cranes and hoist industry. Features include torque proving and brake control; power optimization for higher speeds improved cycle times; synchronized dual hoists; inputs for end of travel and slow down; slack rope detection. Note: an encoder is required for all hoisting applications.	NA	+N652	\$1,087
Spinning Control	The Spinning Control application program is designed to run spinning bobbins in ring frame textile machines. To achieve the best possible form for the doff, the spinning sequence should be ideal for a traverse of the yarn. This is done by giving preset values for speed based on time elapsed. In addition to the base Speed/Time Pattern function, there are three selectable functions: - the Shift function multiplies the speeds defined for the Speed/Time Pattern - the Wobbulation function keeps the yarn tension below the breaking limit by wobbling the spinning speed - the Manual Doff function to make controlled end for doffing before the Speed Time Pattern is finished	NA	+N654	\$605
Progressive Cavity Pump (PCP) * Requires app review \& Industrial Sales approval	Software to provide protection and optimization for Progressive Cavity Pumps and Electrical Submersible Pumps for the Oil and Gas industry. The software is designed to protect the pump rods from over torque situation during adverse conditions and provides safe shutdown through controlled backspin. It also provides for input from external sensors for further protection and returns feedback in pump terminology (rod speed and torque etc..).	NA	+N655	\$1,087
Inline Control * for process line applications	The Inline Control application software is designed for process line Draw / Dancer / Tension control. An inline section on a process line is a section controlling the web in the machine after an extruder or unwind and before the winder or sheeter.	NA	+N660	\$465
Center Winder/Unwind * Requires app review \& Industrial Sales approval	The Center Winder/Unwind software is designed for process lines. The program supports tension control of a web using Dancer trim, Tension trim, or torque control. Included are a diameter calculator, tension regulators, inertia compensation, and roll change logic for continuous process lines. (Application training required)	NA	+N661	\$1,087
Traverse Control	Traverse drives are used in textile machines to guide yarn into a yarn package. - To get even winding for the yarn, the drive decreases/increases the speed smoothly depending on the package form and the movement direction of the yarn guide. - To avoid layering at the reversal points of the yarn guide, the drive performs an instantaneous speed change i.e. "P-Jump	NA	+N668	\$465
$\begin{array}{\|l} \hline \text { Centrifuge Control } \\ \text { * Decanter control } \\ \text { requires DDCS } \\ \text { communication \& } \\ \text { Fiber Optic cables } \end{array}$	The Centrifuge Application is designed for simple single motor batch centrifuge and also for coordinating the bowl and scroll motors on a horizontal decanter style centrifuge. For Decanter Centrifuge operation, each drive will require RDCO-0x boards and fiber optic cables for the connection.	NA	+N669	\$465
Injection Molding	The injection molding software has 16 preset speeds with process oriented texts that are preprogrammed into 11 separate mold configurations (recipes). Through the use of four digital inputs, these \% speed references are commanded to the drive. The individual mold recipes are selected via parameter. A kW demand display has been added to ease the calculation of consumed power. The Injection Molding software also has the ability to handle multiple motor machines utilizing Master/Follower via fiber optics.	NA	+N657	\$326

Special Application Software - Continued

Name	Description	Field Kit Code	Plus Code	List Price
Rod Pump Light * Requires app review \& Industrial Sales approval	Software to provide protection and optimization of oil and gas industry standard rod pumps including Mark II designs. Standard features include on/off control with adjustable well refill time, two speed control for optimal up and down stroke speeds and the ability to connect to external sensors. With a proximity switch connected to the pump, the drive's POC (Pump on control) can optimize the well's production by maintaining an optimal fluid level in the well.	NA	+N675	\$1,087
Permanent Magnet Synchronous Motor * Requires app review	The Permanent Magnet software is for applications using Permanent Magnet Synchronous Motor. The software offers the same features as the standard software package with specially modified motor control for PM motors.	NA	+N679	\$326
Position Control * Requires app review \& Industrial Sales approval	The Positioning Control software incorporates accurate positioning, synchronization, and DTC performance for position control applications. This software is designed to be an optimal solution to replace systems that implement sensors and PLC's as the main control for positioning systems.	NA	+N685	\$815
System Application Software * Requires Industrial Sales approval	The System Application Software is the "Standard" software included with the multi-drive system products. This software can be used when installing stand- alone drives with system multi-drives. It is designed for usage with over- riding controllers and does not include many of the features included in stand- alone drive standard software	NA	+N671	\$326

Control Panel \& Panel Accessories

Name	Description	Field Kit Code	Plus Code	List Price
Control Panel	ACS800 control panel	CDP312R	NA	$\mathbf{\$ 1 7 5}$
Control panel cable	Screened control panel cable for RMIO to Panel, 0.5m	RPLC-00C	NA	$\mathbf{\$ 5 0}$
Control panel cable	Screened control panel cable for RMIO to Panel, 2.0m	RPLC-02C	NA	$\mathbf{\$ 5 5}$
Control panel cable	Screened control panel cable for RMIO to Panel, 3.0m	NPLC-03C	NA	$\mathbf{\$ 6 5}$
Control panel cable	Screened control panel cable (RJ11 to RJ11), 3.0m	NA	\$245	
Cabinet Panel Mounting	Panel mounting platform for CDP312R is NEMA 12 rated and includes the 3 meter cable. The CDP-312R panel must be purchased separately. Maximum door panel thickness 14ga (2.5mm)	RPMP-11	NA	$\mathbf{\$ 4 2 0}$
Cabinet Panel Mounting	Panel mounting platform for CDP312R is NEMA 12 rated, includes 3 meter cable, and CDP312R control panel. Maximum door panel thickness 14ga (2.5mm)	RPMP-13	NA	\$513
Control Panel Mounting	Legacy Panel mounting platform for the CDP-312R, includes 3 meter cable. This panel mounting is larger than the RPMP-11. It includes screw mounting for larger gauge steel panels and NEMA 12 rated gasket. The CDP-312R panel must be purchased separately.	NPMP-01-KIT	N	

Fiber Optic cables and Branching units

Name	Description	Field Kit Code	Plus Code	List Price
Branching Unit	Star connection branching unit with nine (9) output connections. Eight (8) connections rated for 5 Mb , one (1) rated for 10 Mb . Coated Board	NDBU-85C	NA	\$1,370
Branching Unit	Star connection branching unit with none (9) output connections. Nine (9) output connections rated for 10Mb. Coated Board	NDBU-95C	NA	\$1,625
Fiber Optic Converter / Repeater	The NOCR (optical converter and repeater) converts between different types of optical cable. The NOCR can convert plastic fiber optic to glass fiber optic (GOF) or hard clad silica (HCS) and back to plastic. The NOCR can be used as a repeater for long distance (up to 1200 m) transmission using GOF or HCS for long distance link.	NOCR-01	NA	\$3,053
Fiber Optic cable	Single plastic fiber optic, Qty2, 2 meter long	NLWC-02-KIT	NA	\$91
Fiber Optic cable	Single plastic fiber optic, Qty2, 3 meter long	NLWC-03-KIT	NA	\$117
Fiber Optic cable	Single plastic fiber optic, Qty2, 5 meter long	NLWC-05-KIT	NA	\$140
Fiber Optic cable	Single plastic fiber optic, Qty2, 7 meter long	NLWC-07-KIT	NA	\$163
Fiber Optic cable	Single plastic fiber optic, Qty2, 10 meter long	NLWC-10-KIT	NA	\$208
Fiber Optic cable	Double plastic fiber optic, Qty1, 0.5 meter long	PN - 61059130	NA	\$140
Fiber Optic cable	Double plastic fiber optic, Qty1, 2 meter long	PN - 61059121	NA	\$172
Fiber Optic cable	Double plastic fiber optic, Qty1, 5 meter long	PN - 61059113	NA	\$241
Fiber Optic cable	Double plastic fiber optic, Qty1, 10 meter long	PN - 61046534	NA	\$289

External Braking Choppers

Name	Description	Field Kit Code	$\begin{aligned} & \text { Plus } \\ & \text { Code } \end{aligned}$	List Price
External 230-500Vac Braking Chopper	```Externally mounted braking chopper 230/400/500Vac Enclosure = IP54 Brake Power Max = 18.5kW Not UL listed```	NBRA-653C	NA	\$710
External 230-500Vac Braking Chopper	Externally mounted braking chopper $230 / 400 / 500 \mathrm{Vac} \quad$ Enclosure $=\mathrm{IP} 00$ Brake Power Max $=268 \mathrm{~kW}$ Not UL listed	NBRA-658C	NA	\$1,995
External 230-500Vac Braking Chopper	```Externally mounted braking chopper \(230 / 400 / 500 \mathrm{Vac}\) Enclosure \(=\mathrm{IP} 00\) Brake Power Max \(=403 \mathrm{~kW}\) Not UL listed```	NBRA-659C	NA	\$3,331
External 600Vac Braking Chopper	```Externally mounted braking chopper 600Vac Enclosure = IP54 Brake Power Max = 19.8kW Not UL listed```	NBRA-663C	NA	\$904
External 600Vac Braking Chopper	```Externally mounted braking chopper 600Vac Enclosure = IP00 Brake Power Max = 404kW Not UL listed```	NBRA-669C	NA	\$4,359

[^4]
Driveware options

Name	Description	Field Kit Code	Plus Code	List Price
DriveWindow with Hardware	DriveWindow is a software designed for online drive commissioning and maintenance purposes. Connection to the drive is through a PCMCIA card and high speed fiber optic cable. Drive requires an optional RDCO-0x card to support the fiber optic connection. DriveWindow supports Microsoft Windows operating systems (Windows NT4, 2000, \& XP). - Parameter editing and monitoring - Upload/download drive parameter files, save and copy - Compare files - Trending up to six (6) signals - Drive Control for commissioning and test Includes, DriveWindow install CD and PCMCIA connection kit (PCMCIA card, fiber optic connector, \& fiber optic cable 10meters)	3AFE64547992	NA	\$1,944
DriveWindow without Hardware	DriveWindow install CD (upgrade) Hardware is not included.	3AFE64547968	NA	\$653
PCI adapter card for PCMCIA card	PCI socket adapter card for support of PCMCIA card in desktop PC	3AFE64510304	NA	\$497
DriveWindow Light without Hardware for ACS800	A reduced version of ABB's full DriveWindow package. DriveWindow Light communicates via an RS232 to RS485 adapter, using a serial connection through the panel port. DriveWindow Light supports Microsoft Windows operating systems (Windows NT4, 2000, \& XP). - Upload/download drive parameter files, save and copy - Compare files - Trending (on a limited basis) - Drive Control (Start, Stop, Speed Ref) Hardware for ACS800 must be ordered separately ê	3AFE64532871	NA	\$275
$\begin{array}{\|l} \hline \text { DriveWindow Light } \\ \text { Hardware for ACS800 } \end{array}$	Hardware for ACS800 connection to PC for DriveWindow Light.	$\begin{aligned} & \text { NPCU-01 FLD } \\ & \text { OPT } \end{aligned}$	NA	\$220
Drive AP with Hardware	Drive AP is the software programming package for utilizing the 15 programmable blocks included with standard drive firmware. This is a graphical programming tool for the adaptive programming feature. Drive AP supports Microsoft Windows operating systems (Windows NT4, 2000, \& XP). This package includes the PCMCIA connection kit for connectivity to the ACS800. This is the same hardware included with DriveWindow. If you already have the hardware for DriveWindow, you may choose the option for Drive AP without Hardware.	3AFE64554476	NA	\$1,775
Drive AP without Hardware	Drive AP install CD, Hardware is not included.	3AFE64554468	NA	\$357

Miscellaneous

Name	Description	Field Kit Code	Plus Code	List Price
ACS800 Demo Case	Powered by 115VAC the ACS800 Democase includes an ACS800 R2 drive mounted on a panel. Included is a motor with brake and an I/O board. Also included are a RAIO-01, RDIO-01 and RDCO-03 mounted internally to the drive. Fiber optic ports are provided for connection to DriveWindow or external options.	ACS800- DEMOCASE	NA	$\mathbf{\$ 5 , 7 9 5}$

ACS800 AC Drives

Dynamic Braking Table - 200-240V applications, stopping duty only

Drive P/N ACS800- U1-	$\begin{aligned} & \text { HP } \\ & \text { ND } \end{aligned}$	Duty Cycle $=3 \mathrm{sec}$ on $/ 27 \mathrm{sec}$ off						Duty Cycle $=10 \mathrm{sec}$ on $/ 50 \mathrm{sec}$ off					
		Resistor Part No.	Ohms	Watts	Dimensions	List Price		Resistor Part No.	Ohms	Watts	Dimensions		List Price
0001-2	1	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208
0002-2	1.5	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208
0003-2	2	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208
0004-2	3	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208	ABB-48431-021	44.0	800	12Wx7Dx5H	\$	315
0006-2	5	ABB-48431-001	22.0	285	12Wx5Dx5H	\$	208	ABB-48431-002	22.0	819	12Wx7Dx5H	\$	315
0009-2	7.5	ABB-48431-002	22.0	819	12Wx7Dx5H	\$	315	ABB-48431-002	22.0	819	12Wx7Dx5H	\$	315
0011-2	10	ABB-48431-030	13.0	1433	12Wx13Dx5H	\$	494	ABB-48431-030	13.0	1433	12Wx13Dx5H	\$	494
0016-2	15	ABB-48431-091	8.5	719	12Wx7Dx5H	\$	315	ABB-48431-093	8.5	1224	12Wx10Dx5H	\$	405
0020-2	20	ABB-41133	8.0	900	12Wx10Dx5H	\$	405	ABB-48431-096	8.5	2754	19Wx10Dx5H	\$	738
0025-2	25	ABB-41148	6.0	3000	19Wx10Dx5H	\$	738	ABB-41148	6.0	3000	19Wx10Dx5H	\$	738
0030-2	30	ABB-48431-181	4.3	3135	19Wx10Dx5H	\$	704	ABB-48431-181	4.3	3135	19Wx10Dx5H	\$	704
0040-2	40	ABB-48431-181	4.3	3135	19Wx10Dx5H	\$	704	ABB-41149	4.0	3600	19Wx10Dx5H	\$	738
0050-2	50	ABB-48431-301	2.5	2723	19Wx10Dx5H	\$	704	ABB-48431-304	2.5	6250	$26.5 \mathrm{~W} \times 13 \mathrm{D} \times 5 \mathrm{H}$	\$	1,157
0060-2	60	ABB-49173-006	2.0	3600	19Wx10Dx5H	\$	782	ABB-49173-007	2.0	8600	$26.5 \mathrm{~W} \times 16 \mathrm{Dx} 5 \mathrm{H}$	\$	1,620
0070-2	75	ABB-49173-006	2.0	3600	19Wx10Dx5H	\$	782	ABB-49173-007	2.0	8600	$26.5 \mathrm{~W} \times 16 \mathrm{D} \times 5 \mathrm{H}$	\$	1,620

Dynamic Braking Table - 200-240V applications, stopping duty only

		Duty Cycle $=30 \mathrm{sec}$ on / 180sec off						Duty Cycle $=60 \mathrm{sec}$ on / 180sec off					
ACS800-U1-	$\begin{aligned} & \text { HP } \\ & \text { ND } \end{aligned}$	Resistor Part No.	Ohms	Watts	Dimensions		List Price	Resistor Part No.	Ohms	Watts	Dimensions		List Price
0001-2	1	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208
0002-2	1.5	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208
0003-2	2	ABB-48431-021	44.0	800	12Wx7Dx5H	\$	315	ABB-48431-021	44.0	800	12Wx7Dx5H	\$	315
0004-2	3	ABB-48431-021	44.0	800	12Wx7Dx5H	\$	315	ABB-48431-021	44.0	800	12Wx7Dx5H	\$	315
0006-2	5	ABB-48431-002	22.0	819	12Wx7Dx5H	\$	315	ABB-48431-003	22.0	1140	12Wx10Dx5H	\$	405
0009-2	7.5	ABB-48431-003	22.0	1140	12Wx10Dx5H	\$	405	ABB-48431-005	22.0	1862	12Wx16Dx5H	\$	585
0011-2	10	ABB-48431-030	13.0	1433	12Wx13Dx5H	\$	494	ABB-44473	13.5	2509	19Wx10Dx5H	\$	738
0016-2	15	ABB-48431-095	8.5	1913	12Wx16Dx5H	\$	585	ABB-41170	8.0	4600	26.5Wx10Dx5H	\$	850
0020-2	20	ABB-48431-096	8.5	2754	19Wx10Dx5H	\$	738	ABB-41170	8.0	4600	26.5Wx10Dx5H	\$	850
0025-2	25	ABB-41160	6.0	3800	19Wx10Dx5H	\$	738	ABB-41162	6.0	5200	26.5Wx10Dx5H	\$	850
0030-2	30	ABB-41149	4.0	3600	19Wx10Dx5H	\$	738	ABB-44479	4.3	9872	26.5Wx16Dx5H	\$	1,466
0040-2	40	ABB-41150	4.0	5600	$26.5 \mathrm{~W} \times 10 \mathrm{Dx5H}$	\$	982	ABB-44479	4.3	9872	$26.5 \mathrm{~W} \times 16 \mathrm{Dx5H}$	\$	1,466
0050-2	50	ABB-48431-304	2.5	6250	26.5Wx13Dx5H	\$	1,157	ABB-48431-305	2.5	16000	$28 \mathrm{~W} \times 16 \mathrm{D} \times 10 \mathrm{H}$	\$	2,589
0060-2	60	ABB-49173-007	2.0	8600	26.5Wx16Dx5H	\$	1,620	ABB-48431-330	2.2	14080	28Wx16Dx10H	\$	2,377
0070-2	75	ABB-48431-330	2.2	14080	$28 \mathrm{~W} \times 16 \mathrm{Dx} 10 \mathrm{H}$	\$	2,377	ABB-42684	2.3	18000	$28 \mathrm{~W} \times 16 \mathrm{D} \times 10 \mathrm{H}$	\$	2,589

ACS800 AC Drives

Dynamic Braking Table-380-480V applications, stopping duty only

		Duty Cycle $=3 \mathrm{sec}$ on / 27sec off						Duty Cycle $=10 \mathrm{sec}$ on $/ 50 \mathrm{sec}$ off					
ACS800- U1-	$\begin{aligned} & \text { HP } \\ & \text { ND } \end{aligned}$	Resistor Part No.	Ohms	Watts	Dimensions		$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	Resistor Part No.	Ohms	Watts	Dimensions		List Price
0004-5	3	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208
0005-5	3	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208	ABB-48431-020	44.0	324	$12 \mathrm{~W} \times 5 \mathrm{D} \times 5 \mathrm{H}$	\$	208
0006-5	5	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208	ABB-48431-021	44.0	800	12Wx7Dx5H	\$	315
0009-5	8	ABB-48431-021	44.0	800	12Wx7Dx5H	\$	315	ABB-48431-021	44.0	800	12Wx7Dx5H	\$	315
0011-5	10	ABB-48431-021	44.0	800	12Wx7Dx5H	\$	315	ABB-48431-022	44.0	1263	12Wx10Dx5H	\$	405
0016-5	15	ABB-48431-002	22.0	819	12Wx7Dx5H	\$	315	ABB-48431-004	22.0	1408	12Wx13Dx5H	\$	494
0020-5	20	ABB-48431-003	22.0	1140	12Wx10Dx5H	\$	405	ABB-48431-006	22.0	2200	19Wx10Dx5H	\$	674
0025-5	25	ABB-48431-004	22.0	1408	$12 \mathrm{~W} \times 13 \mathrm{D} \times 5 \mathrm{H}$	\$	494	ABB-48431-007	22.0	2426	19Wx10Dx5H	\$	674
0030-5	30	ABB-48431-031	13.0	1872	12Wx16Dx5H	\$	585	ABB-48431-033	13.0	3328	19Wx10Dx5H	\$	704
0040-5	40	ABB-48431-032	13.0	2197	19Wx10Dx5H	\$	704	ABB-48431-035	13.0	4212	26.5Wx10Dx5H	\$	850
0050-5	50	ABB-48431-096	8.5	2754	19Wx10Dx5H		738	ABB-48431-068	11.0	4400	$26.5 \mathrm{~W} \times 10 \mathrm{Dx} 5 \mathrm{H}$	\$	850
0060-5	60	ABB-48431-097	8.5	5313	26.5Wx13Dx5H		1,066	ABB-48431-097	8.5	5313	$26.5 \mathrm{~W} \times 13 \mathrm{Dx5H}$	\$	1,066
0070-5	75	ABB-48431-120	8.0	6272	26.5Wx16Dx5H	\$	1,246	ABB-48431-099	8.5	7650	$26.5 \mathrm{~W} \times 16 \mathrm{Dx5H}$	\$	1,344
0100-5	100	ABB-48431-159	5.3	4770	26.5Wx10Dx5H	\$	908	ABB-48431-184	4.3	10750	$28 \mathrm{~W} \times 10 \mathrm{D} \times 10 \mathrm{H}$	\$	1,724
0120-5	125	ABB-48431-183	4.3	6209	26.5Wx13Dx5H	\$	1,157	ABB-48431-185	4.3	17067	28Wx13Dx10H	\$	2,156
0140-5	150	ABB-48431-184	4.3	10750	$28 \mathrm{~W} \times 10 \mathrm{D} \times 10 \mathrm{H}$	\$	1,724	ABB-48431-185	4.3	17067	28Wx13Dx10H	\$	2,156
0205-5	200	ABB-48431-184	4.3	10750	$28 \mathrm{~W} \times 10 \mathrm{Dx10H}$	\$	1,724	ABB-48431-185	4.3	17067	$28 \mathrm{~W} \times 13 \mathrm{D} \times 10 \mathrm{H}$	\$	2,156

Dynamic Braking Table-380-480V applications, stopping duty only

rive P / N		Duty Cycle $=30 \mathrm{sec}$ on / 180sec off						Duty Cycle $=60 \mathrm{sec}$ on / 180sec off					
ACS800- U1-	$\begin{aligned} & \text { HP } \\ & \text { ND } \end{aligned}$	Resistor Part No.	Ohms	Watts	Dimensions		List Price	Resistor Part No.	Ohms	Watts	Dimensions		List Price
0004-5	3	ABB-48431-020	44.0	324	12Wx5Dx5H	\$	208	ABB-48431-021	44.0	800	12Wx7Dx5H	\$	315
0005-5	3	ABB-48431-021	44.0	800	12Wx7Dx5H	\$	315	ABB-48431-021	44.0	800	12Wx7Dx5H	\$	315
0006-5	5	ABB-48431-021	44.0	800	12Wx7Dx5H	\$	315	ABB-48431-022	44.0	1263	12Wx10Dx5H	\$	405
0009-5	8	ABB-48431-022	44.0	1263	12Wx10Dx5H	\$	405	ABB-48431-023	44.0	3294	19Wx13Dx5H	\$	819
0011-5	10	ABB-48431-023	44.0	3294	19Wx13Dx5H	\$	819	ABB-48431-023	44.0	3294	19Wx13Dx5H	\$	819
0016-5	15	ABB-48431-006	22.0	2200	19Wx10Dx5H	\$	674	ABB-48431-009	22.0	5632	$26.5 \mathrm{~W} \times 10 \mathrm{Dx5H}$	\$	908
0020-5	20	ABB-48431-008	22.0	3168	19Wx13Dx5H	\$	819	ABB-48431-009	22.0	5632	26.5Wx10Dx5H	\$	908
0025-5	25	ABB-48431-008	22.0	3168	19Wx13Dx5H	\$	819	ABB-48431-009	22.0	5632	26.5Wx10Dx5H	\$	908
0030-5	30	ABB-48431-035	13.0	4212	26.5Wx10Dx5H	\$	850	ABB-48431-037	13.0	8125	$26.5 \mathrm{~W} \times 16 \mathrm{Dx5H}$	\$	1,344
0040-5	40	ABB-48431-036	13.0	6292	26.5Wx13Dx5H	\$	1,144	ABB-48431-038	13.0	11700	28Wx13Dx10H	\$	1,796
0050-5	50	ABB-48431-069	11.0	6875	26.5Wx13Dx5H	\$	1,144	ABB-48431-100	8.5	12274	$28 \mathrm{~W} \times 13 \mathrm{D} \times 10 \mathrm{H}$	\$	1,966
0060-5	60	ABB-48431-100	8.5	12274	28Wx13Dx10H	\$	1,966	ABB-48431-101	8.5	16456	$28 \mathrm{~W} \times 16 \mathrm{Dx} 10 \mathrm{H}$	\$	2,399
0070-5	75	ABB-48431-100	8.5	12274	$28 \mathrm{~W} \times 13 \mathrm{D} \times 10 \mathrm{H}$	\$	1,966	ABB-48431-101	8.5	16456	$28 \mathrm{~W} \times 16 \mathrm{D} \times 10 \mathrm{H}$	\$	2,399
0100-5	100	ABB-48431-162	5.3	13250	$28 \mathrm{~W} \times 13 \mathrm{D} \times 10 \mathrm{H}$	\$	2,156	ABB-48431-211	4.0	22500	$28 \mathrm{~W} \times 16 \mathrm{D} \times 10 \mathrm{H}$	\$	2,852
0120-5	125	ABB-48431-185	4.3	17067	$28 \mathrm{~W} \times 13 \mathrm{D} \times 10 \mathrm{H}$	\$	2,156	ABB-48431-187	4.3	27520	$30 \mathrm{~W} \times 18 \mathrm{D} \times 24 \mathrm{H}$	\$	3,835
0140-5	150	ABB-48431-211	4.0	22500	$28 \mathrm{~W} \times 16 \mathrm{Dx10H}$	\$	2,852	ABB-48431-188	4.3	34830	$30 \mathrm{~W} \times 18 \mathrm{D} \times 24 \mathrm{H}$	\$	5,003
0205-5	200	ABB-48431-212	4.0	25610	$30 \mathrm{~W} \times 18 \mathrm{D} \times 24 \mathrm{H}$	\$	3,835	ABB-48431-189	4.3	43000	$30 \mathrm{~W} \times 18 \mathrm{D} \times 24 \mathrm{H}$	\$	5,718

Dynamic Braking Table-380-480V applications, stopping duty only

Drive P/N		Duty Cycle = 3sec on / 27sec off						Duty Cycle $=10 \mathrm{sec}$ on / 50sec off				
ACS800-PC/U2/U7-	$\begin{aligned} & \text { HP } \\ & \text { ND } \end{aligned}$	Resistor Part No.	Ohms	Watts	Dimensions		List Price	Resistor Part No.	Ohms	Watts	Dimensions	List Price
0170-5	150	ABB-48431-271	2.9	14210	28Wx10Dx10H	\$	2,026	ABB-48431-272	2.9	16313	28Wx10Dx10H	\$ 2,026
0210-5	200	ABB-48431-271	2.9	14210	$28 \mathrm{~W} \times 10 \mathrm{D} \times 10 \mathrm{H}$	\$	2,026	ABB-48431-273	2.9	23490	$28 \mathrm{~W} \times 16 \mathrm{Dx10H}$	\$ 3,092
0260-5	200	ABB-48431-271	2.9	14210	$28 \mathrm{~W} \times 10 \mathrm{D} \times 10 \mathrm{H}$	\$	2,026	ABB-48431-273	2.9	23490	$28 \mathrm{~W} \times 16 \mathrm{Dx10H}$	\$ 3,092
0270-5	250	ABB-48431-271	2.9	14210	$28 \mathrm{~W} \times 10 \mathrm{D} \times 10 \mathrm{H}$	\$	2,026	ABB-48431-273	2.9	23490	$28 \mathrm{~W} \times 16 \mathrm{Dx10H}$	\$ 3,092
0300-5	300	ABB-48431-331	2.2	17820	$28 \mathrm{~W} \times 13 \mathrm{D} \times 10 \mathrm{H}$	\$	2,559	ABB-48431-332	2.2	26620	$30 \mathrm{~W} \times 18 \mathrm{Dx} 24 \mathrm{H}$	\$ 4,142
0320-5	350	ABB-48431-331	2.2	17820	$28 \mathrm{~W} \times 13 \mathrm{D} \times 10 \mathrm{H}$	\$	2,559	ABB-48431-332	2.2	26620	$30 \mathrm{~W} \times 18 \mathrm{D} \times 24 \mathrm{H}$	\$ 4,142
0400-5	400	ABB-48431-393	1.7	24480	$30 \mathrm{~W} \times 18 \mathrm{D} \times 16 \mathrm{H}$	\$	3,278	ABB-48431-395	1.7	46283	$30 \mathrm{~W} \times 18 \mathrm{Dx} 32 \mathrm{H}$	\$ 7,707
0440-5	450	ABB-48431-480	1.2	32670	$30 \mathrm{~W} \times 18 \mathrm{D} \times 24 \mathrm{H}$	\$	5,361	ABB-48431-482	1.2	60750	$30 \mathrm{~W} \times 18 \mathrm{Dx} 32 \mathrm{H}$	\$ 7,171
0490-5	500	ABB-48431-514	1.0	34200	$30 \mathrm{~W} \times 18 \mathrm{D} \times 24 \mathrm{H}$	\$	4,142	ABB-48431-517	1.0	67600	$30 \mathrm{~W} \times 18 \mathrm{Dx} 40 \mathrm{H}$	\$ 9,456
0550-5	550	ABB-48431-514	1.0	34200	$30 \mathrm{~W} \times 18 \mathrm{D} \times 24 \mathrm{H}$	\$	4,142	ABB-48431-517	1.0	67600	$30 \mathrm{~W} \times 18 \mathrm{Dx} 40 \mathrm{H}$	\$ 9,456
0610-5	600	ABB-48431-515	1.0	40000	$30 \mathrm{~W} \times 18 \mathrm{D} \times 24 \mathrm{H}$	\$	5,361	ABB-48431-518	1.0	90000	$30 \mathrm{~W} \times 18 \mathrm{Dx48H}$	\$ 11,204

Dynamic Braking Table-380-480V applications, stopping duty only

ve P/N		Duty Cycle = 30sec on / 180sec off					Duty Cycle $=60 \mathrm{sec}$ on / 180sec off				
ACS800-PC/U2/U7-	$\begin{aligned} & \mathrm{HP} \\ & \mathrm{ND} \\ & \hline \end{aligned}$	Resistor Part No.	Ohms	Watts	Dimensions	List Price	Resistor Part No.	Ohms	Watts	Dimensions	List Price
0170-5	150	ABB-48431-273	2.9	23490	$28 \mathrm{~W} \times 16 \mathrm{D} \times 10 \mathrm{H}$	\$ 3,092	ABB-48431-275	2.9	41760	$30 \mathrm{~W} \times 18 \mathrm{D} \times 32 \mathrm{H}$	\$ 5,367
0210-5	200	ABB-48431-274	2.9	29000	30Wx18Dx16H	\$ 4,009	ABB-48431-276	2.9	52853	$30 \mathrm{~W} \times 18 \mathrm{D} \times 32 \mathrm{H}$	\$ 7,350
0260-5	200	ABB-48431-274	2.9	29000	30Wx18Dx16H	\$ 4,009	ABB-48431-276	2.9	52853	30Wx18Dx32H	\$ 7,350
0270-5	250	ABB-48431-274	2.9	29000	30Wx18Dx16H	\$ 4,009	ABB-48431-276	2.9	52853	$30 \mathrm{~W} \times 18 \mathrm{D} \times 32 \mathrm{H}$	\$ 7,350
0300-5	300	ABB-48431-334	2.2	40095	$30 \mathrm{~W} \times 18 \mathrm{D} \times 32 \mathrm{H}$	\$ 5,920	ABB-48431-366	1.8	72000	$30 \mathrm{~W} \times 18 \mathrm{D} \times 48 \mathrm{H}$	\$ 9,417
0320-5	350	ABB-48431-334	2.2	40095	$30 \mathrm{~W} \times 18 \mathrm{D} \times 32 \mathrm{H}$	\$ 5,920	ABB-48431-366	1.8	72000	$30 \mathrm{~W} \times 18 \mathrm{Dx} 48 \mathrm{H}$	\$ 9,417
0400-5	400	ABB-48431-396	1.7	58183	$30 \mathrm{~W} \times 18 \mathrm{D} \times 32 \mathrm{H}$	\$ 6,537	ABB-48431-544*	0.9	45600	$30 \mathrm{~W} \times 18 \mathrm{D} \times 24 \mathrm{H}$	\$ 5,361
0440-5	450	ABB-48431-484	1.2	81120	$30 \mathrm{~W} \times 18 \mathrm{D} \times 48 \mathrm{H}$	\$ 11,204	ABB-48431-573*	0.6	73500	$30 \mathrm{~W} \times 18 \mathrm{D} \times 48 \mathrm{H}$	\$ 10,132
0490-5	500	ABB-48431-518	1.0	90000	$30 \mathrm{~W} \times 18 \mathrm{D} \times 48 \mathrm{H}$	\$ 11,204	ABB-Consult Fact				
0550-5	550	ABB-48431-518	1.0	90000	$30 \mathrm{~W} \times 18 \mathrm{D} \times 48 \mathrm{H}$	\$ 11,204	ABB-Consult Fact				
0610-5	600	ABB-48431-518	1.0	90000	$30 \mathrm{~W} \times 18 \mathrm{D} \times 48 \mathrm{H}$	\$ 11,204	ABB-Consult Fact				

[^5]
Dimensions: ACS800-U1, NEMA 1 Frame size R2 through R6

Dimensions - NEMA 1										
Frame	Imperial Units (in)\&(lb)					Metric Units (mm)\&(Kg)				
	H1	H2	Width	Depth	Weight	H1	H2	Width	Depth	Weight
R2	16.12	14.57	6.5	8.88	20	409.4	370.1	165.1	225.6	9
R3	18.49	16.54	6.81	10.43	31	469.6	420.1	173	264.9	14
R4	21.29	19.29	9.45	10.79	57	540.8	490	240	274.1	26
R5	28.27	23.7	10.43	11.25	75	718.1	602	264.9	285.8	34
R6	34.53	27.56	11.81	15.75	148	877.1	700	300	400.1	67

Drawing is not for engineering purposes. See hardware manual for specific dimensions.

Dimensions: ACS800-U1, NEMA 12 Frame size R2 through R6

Dimensions - NEMA 12									
Frame	Imperial Units (in)\&(lb)			Metric Units (mm)\&(Kg)					
	Height	Width	Depth	Weight	Height	Width	Depth	Weight	
	20.78	10.35	9.49	34	527.8	262.9	241	16	
R3	20.78	10.35	10.74	41	527.8	262.9	272.8	18	
R4	30.49	14.84	10.94	73	774.4	376.9	277.9	33	
R5	30.49	14.84	12.14	112	774.4	376.9	308.4	51	
R6	36.34	16.54	16.54	170	923	420.1	420.1	77	

Drawing is not for engineering purposes. See hardware manual for specific dimensions.

Dimensions: ACS800-PC, NEMA 1 \& 12 Frame size R7 through R8

Dimensions										
Frame	Imperial Units (in)\&(lb)					Metric Units (mm)\&(Kg)				
	H1	H2*	Width	Depth	Weight	H1	H2	Width	Depth	Weight
R7	83.7	93.6	31.7	24.4	730	2125	2377	806	621	331
R8	83.7	93.6	31.7	24.4	990	2125	2377	806	621	449

[^6]Dimensions: ACS800-U2, NEMA 1 Frame size R7 through R8

Dimensions - NEMA 1										
	Imperial Units (in)\&(lb)					Metric Units (mm)\&(Kg)				
Frame	Height	W1	W2*	Depth	Weight	Height	W1	W2*	Depth	Weight
R7	59.4	23.7	9.9	20.6	430	1507	602	250	524	195
R8	79.6	31.5	13.8	24.5	827	2020	800	350	622	375

[^7]Dimensions: ACS800-U7, NEMA 1 \& 12 Frame size R6

Dimensions										
Frame	Imperial Units (in)\&(lb)					Metric Units (mm)\&(Kg)				
	H1	H2*	Width	Depth	Weight	H1	H2	Width	Depth	Weight
R6	83.8	91.1	16.9	25.4	662	2130	2315	430	646	300

* NOTE: H2 is the total Height of the NEMA 12 cabinet

Drawing is not for engineering purposes. See hardware manual for specific dimensions.

Dimensions: ACS800-U7, NEMA 1 \& 12 Frame size R7 through R8

Dimensions										
Frame	Imperial Units (in)\&(lb)					Metric Units (mm)\&(Kg)				
	H1	H2*	Width	Depth	Weight	H1	H2	Width	Depth	Weight
R7	83.8	91.1	32.7	25.4	1102	2130	2315	830	646	500
R8	83.8	91.1	32.7	25.4	1102	2130	2315	830	646	500

[^8]Dimensions: ACS800-07, NEMA 1 \& 12 Frame size $1 x D 4+2 x R 8 i$

Dimensions										
Frame	Imperial Units (in)\&(lb)					Metric Units (mm)\&(Kg)				
	H1	H2*	W	Depth	Weight	H1	H2*	W	Depth	Weight
1D4+2R8i	83.9	91.1	83.9	25.4	2977	2130	2315	2130	646	1350

* NOTE: H2 is the total Height of the NEMA 12 cabinet

Drawing is not for engineering purposes. See hardware manual for specific dimensions.

Dimensions: ACS800-07, NEMA 1 \& 12
Frame sizes $2 \times D 4+2 x R 8 i$ through $2 x D 4+3 x R 8 i$

Dimensions										
	Imperial Units (in)\&(lb)					Metric Units (mm) \& (Kg)				
Frame	H1	H2*	W	Depth	Weight	H1	H2*	W	Depth	Weight
2D4+2R8i	83.9	91.1	99.6	25.4	3485	2130	2315	2530	646	1580
2D4+3R8i	83.9	91.1	111.4	25.4	3860	2130	2315	2830	646	1750

* NOTE: H2 is the total Height of the NEMA 12 cabinet

Drawing is not for engineering purposes. See hardware manual for specific dimensions.

Dimensions: ACS800-07, NEMA 1 \& 12
Frame sizes $2 \times D 4+4 \times R 8 i$ through $4 \times D 4+6 \times R 8 i$

Dimensions										
	Imperial Units (in)\&(lb)					Metric Units (mm) \& (Kg)				
Frame	H1	H2*	W	Depth	Weight	H1	H2*	W	Depth	Weight
2D4+4R8i	83.9	91.1	127.2	25.4	4390	2130	2315	3230	646	1991
3D4+3R8i	83.9	91.1	135.0	25.4	4590	2130	2315	3430	646	2082
3D4+4R8i	83.9	91.1	150.8	25.4	5115	2130	2315	3830	646	2320
3D4+5R8i	83.9	91.1	158.7	25.4	5465	2130	2315	4030	646	2478
3D4+6R8i	83.9	91.1	190.2	25.4	5845	2130	2315	4830	646	2651
4D4+6R8i	83.9	91.1	198.0	25.4	6970	2130	2315	5030	646	3161

* NOTE: H2 is the total Height of the NEMA 12 cabinet

Drawing is not for engineering purposes. See hardware manual for specific dimensions.

Dimensions: ACS800-U11, NEMA 1 Frame sizes R5 through R6

 Dimensions: ACS800-U31, NEMA 1 Frame sizes R5 through R6

Dimensions - NEMA 1									
Frame	Imperial Units (in)\&(Ib)			Metric Units (mm)\&(Kg)					
	Height	Width	Depth	Weight	Height	Width	Depth	Weight	
	32.12	10.43	15.35	144	815.8	264.9	389.9	65.3	
R6	38.19	11.81	17.28	221	970	300	438.9	100.2	

Dimensions: ACS800-17, NEMA 1 \& 12 Frame size R6 \& R7i Dimensions: ACS800-37, NEMA 1 \& 12 Frame size R6 \& R7i

Dimensions										
	Imperial Units (in)\&(lb)					Metric Units (mm)\&(Kg)				
Frame	H1	H2*	W	Depth	Weight	H1	H2*	W	Depth	Weight
R6	83.9	91.1	16.9	25.4	662	2130	2315	430	646	300
R7i	83.9	91.1	24.8	25.4	882	2130	2315	630	646	400

* NOTE: H2 is the total Height of the NEMA 12 cabinet

Dimensions: ACS800-17, NEMA 1 \& 12 Frame size R8i Dimensions: ACS800-37, NEMA 1 \& 12 Frame size R8i

Dimensions										
Frame	Imperial Units (in)\&(lb)					Metric Units (mm)\&(Kg)				
	H1	H2*	W1	Depth	Weight	H1	H2*	W1	Depth	Weight
R8i	83.9	91.1	48.4	25.4	2090	2130	2315	1230	646	950

* NOTE: H2 is the total Height of the NEMA 12 cabinet

Dimensions: ACS800-17, NEMA 1 \& 12 Frame size $2 \times$ R8i to $3 x R 8 i$ Dimensions: ACS800-37, NEMA 1 \& 12 Frame size $2 \times R 8 i$ to $3 x R 8 i$

Dimensions										
	Imperial Units (in)\&(lb)					Metric Units (mm) \& (Kg)				
Frame	H1	H2*	W	Depth	Weight	H1	H2*	W	Depth	Weight
$2 \times R 8 i$	83.9	91.1	107.5	25.4	4982	2130	2315	2730	646	2259
$3 \times R 8 i$	83.9	91.1	139.0	25.4	6746	2130	2315	3530	646	3059

* NOTE: H2 is the total Height of the NEMA 12 cabinet

Dimensions: ACS800-17, NEMA 1 \& 12 Frame size 4xR8i to 6xR8i Dimensions: ACS800-37, NEMA 1 \& 12 Frame size 4xR8i to $6 x R 8 i$

Dimensions										
	Imperial Units (in)\&(lb)					Metric Units (mm) \& (Kg)				
Frame	H1	H2*	W	Depth	Weight	H1	H2*	W	Depth	Weight
4xR8i	83.9	91.1	178.3	25.4	7937	2130	2315	4530	646	3600
5xR8i	83.9	91.1	225.6	25.4	10538	2130	2315	5730	646	4779
6xR8i	83.9	91.1	243.4	25.4	10869	2130	2315	6230	646	4929

[^9]Notes:

Notes:

ABB Inc.

Low Voltage Drives 16250 W. Glendale Drive New Berlin, WI 53151
Telephone: (800) 752-0696
Fax: (262) 785-0397
Internet: http://www.abb.us/drives

ABB Inc.
Drives \& LVC Canada
3299 J.B. Deschamps Blvd.
Lachine, Quebec H8T 3E4
Telephone (800) 215-3006
Fax (514) 420-3137
Internet: http://www.abb.com/motors\&drives

[^0]: General and specifically identified notes are at the beginning of the product selection (ratings) tables

[^1]: * ACS800-17 require plus codes +C129+H359 for included options in Hardware Selection \& Description

[^2]: * ACS800-37 require plus codes +C129+H359 for included options in Hardware Selection \& Description

[^3]: * List prices for these options are included in the "Ratings" tables of the previous section

[^4]: NOTE: DC Bus connection is not currently available on the U2 drive product. External brake choppers cannot be connected.

[^5]: * Requires two resistor assemblies each rated as shown and connected in series. (Order quantity 2)

[^6]: * NOTE: H2 is the total Height of the NEMA 12 cabinet

[^7]: * NOTE: W1 is the width of the standard U2, W2 is the width of U2 with option +0C111 to delete Extension Enclosure

[^8]: * NOTE: H2 is the total Height of the NEMA 12 cabinet

[^9]: * NOTE: H2 is the total Height of the NEMA 12 cabinet

